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Abstract

Fusion is a clean energy source which is a promising future nuclear energy resource. One of
the conditions of the nuclear fusion on Earth is to confine very high temperature ionized
particles forming a plasma with magnetic field lines. However, the magnetically con-
fined plasma is not an equilibrium system which leads to a complicated dynamics. Its
spatio-temporal dynamics is not easy to model. The goal of the work is to asses
the feasibility of the development of a useful computational tool for fusion
applications based on edge elements, which is a preferable numerical scheme
for electromagnetic physics including plasma physics. The development uses the
infrastructures of the Parallel Edge-based Tool for Geophysical Electromagnetic Modelling
(PETGEM) which is a Python HPC scalable tool based on edge finite element method.
This code is used to solve the so called Marine Controlled-Source Electromagnetic method
(CSEM) which is an important technique for reducing ambiguities in data interpretation
for hydrocarbon exploration. Finite element method (FEM) and both its nodal and edge
version are explained in this thesis along with a comparison of both methods and the rea-
sons why the edge elements are more suitable for electromagnetic problems. The indexing
and formulation of edge FEM is explained as well as the assembly and the solver used
in PETGEM. This work contains a tutorial on how to use PETGEM which is the result
of the learning process of the multiple simulations carried out. The mesh generation and
refinement is achieved using Gmsh software. The implementation and the benchmark of
different physical initial profiles are achieved through parallel simulations in Marenostrum
supercomputer.
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1 Introduction

1.1 Why the computational study of physics is required?

Physics is based on formulating mathematical models to describe physical phenomena.
These models often rely on solving systems of differential equations, large sums or inte-
grals, derivatives, ... In general, solving analytically the mathematical model for a partic-
ular system is not possible. This can occur when the solution does not have a closed-form
expression, or is too complicated to obtain it. In such cases, numerical approximations
are used to solve the model. The approximations are usually obtained by simple math-
ematical operations repeated many times. Computers have the ability to repeat those
operations in a short time. Those approximations can produce errors from the exact so-
lution. However, those numerical errors can be reduced to the level that they become
irrelevant. The reduction of the errors can be both achieved by improving the numerical
routines (theoretically more difficult) or reducing the numerical step (requiring more com-
putational time). For example, in a numerical integration, one can use the Trapezoidal
rule [1] with a small step that will require large computational times but an easy implemen-
tation of the method. On the other hand, one can apply Romberg’s integration [2] with a
higher step that will require less computational time but larger implementation. Numer-
ical methods are not only important but essential for most research in physics and many
others disciplines. Moreover, computational physics allow physicists to realize “numer-
ical experiments”. Those numerical experiments or simulations are extremely powerful,
for example, one can modify parameters of an experiment which it would be much more
difficult and expensive to do it in real experiments. As an example in plasma physics,
one can simulate different geometries and determine which one causes fewer instabilities.
Building many geometries would be both expensive and slow. Another important applica-
tion of computational physics is weather prediction. Predicting the trajectory of hurricane
Irma on September 2017 allowed the population of the affected zones to get prepared for
the hurricane or even escape it. Computer simulations are also essential for topics such as
aerodynamics, particle physics, space rockets, climate change prediction, traffic prediction.

1.2 Nuclear Fusion

The human population in the world is increasing remarkably. Accordingly, the energy
consumption is expected to increase as shown in Fig. 1. However, current energy sources,
such as fossil fuels or coal, are limited. One alternative to fossil fuels is nuclear fission.
However, fission is not preferable for the environment as it generates radioactive prod-
ucts which are harmful and dangerous for the population. Other alternatives are solar
and wind energy. Yet, those clean sources only produce energy in some time intervals and
the energy obtained cannot be stored because high capacity batteries are not yet available.

One of the best candidates in a middle term is nuclear fusion. The nuclear fusion is con-
sidered as a promising future energy resource for two reasons. First, it does not emit any
harmful residual such as radioactive isotopes or greenhouse gases. Second, there is no
problem with the fuel source as it is two hydrogen isotopes. Fusion must be distinguished
from fission. Nuclear fission is the decay of a heavy atomic nucleus into two lighter frag-
ments. In a thermonuclear fusion reaction, nuclei of light atoms are combined to create a
new element of a slightly less mass than the sum of the initial atoms. The missing mass
is converted into mass according to Einstein’s formula E = 4mc2. In order to achieve
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Figure 1: Global energy consumption over recent history [3].

the nuclear fusion as an energy source, the most attractive reaction involves the fusion of
deuterium (D) and tritium (T) ions as shown in Fig. 2. This reaction releases an energetic
neutron with a kinetic energy of 14.1 MeV and a Helium ion or alpha particle with a
kinetic energy of 3.5 MeV. The sum of both kinetic energies is 17.6 MeV. Alpha particles
will be in charge of maintaining the reaction.

2
1H + 3

1H→ 4
2He + 1

0n + 17.6MeV

Figure 2: Deuterium tritium reaction [4]

Despite the many advantages of fusion over fission, it has been proven to be difficult to
achieve nuclear fusion. In order to start the reaction, one needs to achieve the plasma
state of the fuel at a very high temperature and density. However, it is not easy to confine
the fuel in such state. Both experiments and simulations must be carried out in order to
understand how to best confine the plasma.

Temperature is not the only key factor but also a suitable confinement and density are
required to achieve fusion. An important concept in the field of nuclear fusion is the Law-
son Criteria. It defines the condition between the plasma electron density ne, the energy
confinement time τE , and the ignition plasma temperature T . Lawson’s triple product rep-
resents a power balance in thermonuclear reactors in order reach a self- sustained state in
which no input of energy is required. For Deuterium-Tritium reactions, and temperatures
of the order of T = 14KeV , the triple product becomes:

neτET ≥ 3 · 1021KeV s/m3 (1)
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1.3 Plasma

It is often said that the plasma is a cloud of electrons, protons, and neutrons. Those elec-
trons have been excited from their respective molecules and atoms due to high thermal
excitation. However, not all ionized gas can be called a plasma. A definition of a plasma
is proposed by Chen [5]:

A plasma is a quasi-neutral gas of charged and neutral particles which exhibits collec-
tive behavior.

The meaning of ”collective behavior” means that plasmas have more interaction than
regular liquids and gases. This arises from the fact that when plasma particles move they
create electromagnetic fields that modify the dynamics of the plasma particles. The plas-
mas interact among themselves more than liquids and gases. The ”quasineutrality” means
that even the net charge of the plasma is zero as in most matter, particles are ionized
and ions and electrons are separated and can have different behavior. As the general rule,
one can take nelectrons ' nprotons but one cannot neglect electromagnetic fields created by
small differences in the density of electrons and ions.

The criteria for an ionized gas to be plasma can be summarized in three mathematical
conditions [5]:

• λD � L
Where L is the dimension of the overall plasma and λD is the Debye length λD =(
ε0KT
e2n

)2
. These condition emerges from the ”Debye shielding”, the attenuation of

any potential present in the plasma. The Debye shielding has been observed exper-
imentally.

• ND = n4
3πλD � 1

Debye shielding is only valid if there are enough particles in the plasma. One can
compute the number of particles in a ”Debye sphere” (ND) that is a sphere of Debye
length radius. The number of particles is obtained by multiplying the density of
particles (n) by the volume of the sphere 4

3πλD. This quantity must be much larger
than 1.

• w · τ > 1
This conditions are still fulfilled by jet exhaustion’s particles which interact more with
normal air particles. One requires more electromagnetic interactions than ordinary
hydrodynamic interactions. Therefore, w · τ > 1 where τ is the mean time between
collisions with neutral atoms and w is the frequency of typical plasma oscillations.

Plasmas appear in many applications besides nuclear fusion:

• Illumination Plasma is used in illumination in some devices. For example, gas-
discharge lamps use plasma in order to illuminate the environment. Another example
is plasma displays, they use small cells containing electrically charged ionized gases,
which are plasmas.

• Propulsion Plasma can be used as ion propulsion [6]. Due to their large charge-mass
ratio, ions can be accelerated by electric fields to large velocities. Throwing ions in
the opposite direction will accelerate rockets. The large accelerations achieved need
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less fuel than normal combustion. Therefore, plasma propulsion fuel is more efficient
than usual combustion.

• Medicine Plasma can be used in medicine for sterilization of implants or surgical
instruments. It is also used to modify biomaterials [7]

• Industry Plasmas are used in semiconductors devices fabrication and industry.
Some processes that use plasma are plasma activation, plasma etching, plasma clean-
ing, ... [8].

1.4 Fusion Reactors

There are many different devices to study fusion. A summary of them is given in Fig.
3. The most used category is the magnetic confinement. In the magnetic confinement,
the high-temperature fusion plasma is confined by strong magnetic fields in order to avoid
touching the reactor wall. One can classify magnetic confinement systems in open-end sys-
tems and closed systems. In open systems, plasma does not repeat the same path, while
on closed systems plasma does repeat the same path over and over. One can compare this
separation to linear accelerators and synchrotrons in particle physics. Here we will focus
mainly on tokamak and stellarators.

Figure 3: Fusion devices classification [9]

The tokamak is the most common magnetic confinement option for fusion worldwide. This
design was proposed in 1950 by Soviet physicists Igor Tamn and Andrei Sakharov inspired
by the idea of Oleg Lavrentiev [10] and comes from a Russian acronym that stands for
”toroidal chamber with magnetic coils”. The tokamak and stellarator configurations are
shown in Fig. 4. The E×B drift shifts all particles to the external part of the toroid since
vE×B = E×B

B2 = −Ez
B êR. On the other hand, curvature drift separate ions and electrons

as in the Fig. 5. The solution to the charge separation problem is giving a small poloidal
component to the magnetic field. Furthermore, the poloidal cross-section of tokamaks are
not exactly circular, it has some ellipsity and some triangularitiy to improve the plasma
stability.

The second main option to achieve controlled nuclear fusion is the stellarator. It was
invented on 1951 by Lyman Spitzer (Princeton). The main difference between a stellara-
tor and a tokamak is the stellarator’s more complex shape as illustrated in Fig. 4. The
twisting paths were proposed in order to cancel out instabilities seen in tokamaks. In the
following years, stellarators were constructed and demonstrated poor performance due to
a problem called ”pump out”. Since the 1960s tokamak showed higher performance than
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Figure 4: [11] Schematic picture of a) tokamak and b) stellarator

Figure 5: Poloidal cut of a tokamak [12]

stellarators. However, by the 1990s tokamaks were proved to have similar problems than
stellarators. The main stellarator project nowadays is Wendelstein 7-X in Germany.

ITER and JET projects are based on tokamak. ITER is an international nuclear fu-
sion research project [13]. ITER’s objective is to demonstrate the scientific and techno-
logical feasibility of fusion energy for peaceful purposes. ITER is being constructed in
Saint-Paul-lès-Durance (France) and will have the world’s largest tokamak nuclear fusion
reactor. This project is funded worldwide by European Union, India, Japan, China, Rus-
sia, South Korea, and the United States. ITER reactor is aimed to make the transition
from the experimental fusion to the full-scale fusion power stations. It is expected to pro-
duce 500 MW with an input power of 50 MW (Q =

Poutput

Pinput
= 10). Some ITER objectives

are to produce a steady-state plasma with a Q greater than 5, to maintain a fusion pulse
up to 8 minutes and to ignite a self-sustained plasma. The reactor will be able to host
840m3 surpassing the volume of the largest present-day device, the Joint European Torus
(JET) by a factor of 10. After ITER the next international big project will be DEMO
(DEMOnstration Power Station) that is intended to lie somewhere between those of ITER
and a “first of a kind” commercial station.

The situation when Q = 1 is called “breakeven”. That situation implies that the power
gains and the looses balance each other. The ideal situation is when Q = ∞ (ignition),
that means disconnecting the power input Pinput = 0 and still maintaining the reaction by
just adding more fuel. While this situation has not been achieved in 2017, there is plenty
of research on the relevance of the alpha particles in maintaining the reaction. While the
alpha particles may have the duty to achieve ignition, the neutrons produced have the duty
to produce the output energy. The 14.1 MeV neutrons will be isotropically distributed
and absorbed by the reactors’ walls that will heat water located in a vessel surrounding
the reactor. Therefore, water will boil and will move a turbine producing electricity.
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1.5 Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the study of the magnetic and electric properties of
conducting fluids. The field of MHD was started by Hannes Alfvén for which he received
the Physics Nobel prize in 1970. MHD is a mathematical model used to describe the
plasma. While there are some extensions of MHD, this work will focus on the simplest
model, “Ideal MHD”. This simplification relies on the assumption that the fluid has so little
resistivity that can be considered a perfect conductor. Moreover, since plasma is modeled
as a fluid, some physics as kinetic effects are ignored. Yet, although the model is simple,
it describes most basic properties of tokamak plasmas. The “Ideal MHD” is a system
of seven differential equations given by “continuity, momentum and energy equations”
together with “low-frequency Maxwell’s equations”.

∂ρ

∂t
+∇ · (ρv) = 0 (2)

ρ
dv

dt
= J×B−∇p (3)

d

dt

(
p

ργ

)
= 0 (4)

E + v ×B = 0 (5)

∇×E = −∂B

∂t
(6)

∇×B = µ0J (7)

∇ ·B = 0, (8)

where ρ is the density, v is the fluid velocity, p is the pressure, E and B are the electric
and magnetic field, J is the current density and γ is the “heat capacity ratio”. Since the
plasma is ionized, it can be considered ideal and monoatomic (γ = 5/3). Furthermore,
Eqs. 3 and 4 use the “convective derivative” (d/dt = ∂/∂t + v · ∇). It is important to
remark that MHD is a mixture between Fluid Mechanics (Eqs. 2-4) and Electromagnetism
(Eqs. 5-8). The main concept behind MHD is that the magnetic fields can create currents
in the plasmas. Those fields polarize the fluid and change the magnetic field. MHD is not
only used in fusion but also in geophysics where it is used in the Earth’s core to study
the Earth’s magnetic field and in astrophysics, where it is used, among other examples, to
study the jet’s propulsion system and the stars.

1.6 State of the art and motivation of the work

There are many different fusion simulation codes based on different numerical schemes.
However, there is not any complete code which solves all the physics involved in a fusion
reactor. Some examples of fusion codes are: JOREK [14] which solves three dimensional
non-linear MHD model, PION [15] code which solves Fokker-Planck equation to study the
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heating by Ion Cyclotron Resonance Frequency Waves (ICRF), ASCOT [16] is a Monte-
carlo code which also studies ICRF and EUTERPE [17] uses particle in cell scheme to
study plasma instabilities.

The thesis project focuses on an edge finite element method (EFEM) which is not a com-
mon approach among the fusion community. The geophysics code PETGEM [18], which
will be explained in section 3, is not only based on EFEM but also solves Maxwell’s equa-
tions which are part of MHD equations, the long-term objective of this project. Moreover,
PETGEM is written in Python, a programming language with a large growth in the recent
years. PETGEM is High Performance Computing (HPC) and parallel. This HPC capa-
bility is essential to study plasma since it is turbulent and requires high density meshes
which increase significantly the computational time required. Therefore these simulations
are required to run in large supercomputers and PETGEM has been proved to be very
efficient in Marenostrum supercomputer.

Therefore, PETGEM shows a good potential as an infrastructure to start this new re-
search line. This project assesses the feasibility of the implementation of the edge based
finite element method code PETGEM for fusion applications.

1.7 Structure of this thesis

This thesis is organized as follows. Chapter 1 gives the introduction to plasma physics
and states the importance of fusion research. Chapter 2 explains the numerical scheme of
this thesis. Finite element method both its nodal and edge version are explained along
with a comparison of both methods and the reasons why the edge elements should be
used for fusion problems. Chapter 3 introduces PETGEM code along with instructions on
how to run the code. Those instructions are the result of the multiple simulations carried
out using this code. Chapter 4 summarizes the results of this new research line to apply
edge finite element method to fusion problems. Finally, chapter 5 contains the conclusions
of this thesis and chapter 6 is a description of the future work to do in this new research line.

The thesis work consists of following four steps: to understand and learn EFEM the-
ory, to understand the workflow and the scripts of PETGEM code, to check the capability
to implement different initial profiles and to change the equations that PETGEM solves
and introducing the time integration of the equations as summarized in this chapter:
Learn EFEM→ Understanding PETGEM→ Check initial profile→ Change equations
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2 Finite Element Method (FEM)

The Finite element method is a common approach to solve numerically differential equa-
tions in complex geometries, it is the approach used in PETGEM. In this chapter, the
FEM method is explained starting from the nodal elements, then moving to the edge el-
ements and remarking why edge elements should be used for electromagnetic problems.
The indexing, the formulation and the assembly of the edge finite element method are
explained in this chapter. However, firstly an explanation of the Finite Difference Method
is given in order to better understand the Finite Element method.

2.1 Space discretization

Computer can not treat continuous space, they only can handle discrete space. There-
fore, in order to use numerical methods, space must be discretized. There are different
discretizations methods used to solve partial differential equations. Some examples are
Finite Element Method (FEM), Finite Difference Method (FDM), Finite Volume Method
(FVM), Spectral Method.

The Finite Difference Method (FDM) is the simplest numerical technique used to solve
differential equations, especially partial differential equations. It is based on Taylor’s ex-
pansion. By dividing space in homogeneously distributed by a separation h and expanding
a function at a certain point x0, one has:

f(x0 + h) = f(x0) + f ′(x0)h+ f ′′(x0)h2/2 + ... , (9)

neglecting O(h2) and higher orders, one can easily get:

f ′(x) ≈ f(x+ h)− f(x)

h
. (10)

Repeating the same procedure with the second derivative, one finally obtains.

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
. (11)

These differential equations are solved by replacing the derivatives with the equations 10
and 11. FDM has an error of O(h) over the first derivative and a O(h2) over the second
derivative.

2.2 Main concepts of the Finite Element Method

The main idea behind FEM is to divide the whole domain into elements or subdomains
which have associated simple equations that approximate the equations to solve. While
FDM divides space homogeneously, FEM has a specific division of space to that leads to
better representations of complex geometries, better capture of locals effects, etc. The
elements can have different geometries and can be used for one-dimensional (1D), two-
dimensional (2D) and three-dimensional (3D) problems. Some examples of 2D problems
are rectangles and triangles while some 3D examples are the rectangular prism, the squared
pyramid and the triangular pyramid (Tetrahedron). In the work, only tetrahedrons will
be used because they are the only ones supported by PETGEM. PETGEM focuses on
tetrahedrons because they are the easiest to scale-up to very large domains or arbitrary
shape. Figure 6 shows a comparison between FDM’s and FEM’s discretizations.
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Figure 6: FDM example on the left part [19]. On the right part the same example but with triangular
mesh used in FEM.

Figure 6 shows that the corners have more density of elements in order to achieve more ac-
curacy. Increasing the density of elements is called Refinement. The refinement produces
two main advantages for FEM: The first one is that it allows more accuracy in the target
areas. The second advantage is the reduction of the computational time by decreasing the
density of elements in the areas where the function has a low changing rate. These meth-
ods are based on an interpolation function whose coefficients are obtained from solving a
matrix equation A · x = b.

FEM is based on two main approaches: the nodal based element and the edge based
element. The main idea in both nodal and edge elements is to solve a matrix equation
A · x = b and then interpolate the result at any point using interpolation functions (often
called basis function). The construction of the matrix A and the array b is a complex
task that will be explained in the following subsections. The solution x are the coefficients
of the interpolation functions and in FEM theory are called degrees of freedom (DOFs).
The main difference between both methods is that in the nodal elements the DOFs are
assigned to the nodes while on the edge elements are assigned to the edges. FEM can
be used different geometries but along this work, only triangles for 2D and tetrahedra for
3D will be used, as shown in Fig. 7. The interpolation functions are scalar for nodal
elements and vectorial for edge elements. Therefore, the output of the nodal elements will
be scalar while the edges’ output will be vectorial. Since this thesis focuses on solving
electromagnetic problems, the output of nodal elements will be the electric potential (φ)
while the edges’ output will be the electric field (E). Finally, due to the fact that edges
elements are built over nodal elements, the nodal elements will be explained first.

2.3 Nodal elements

The main idea of nodal elements is to obtain the coefficients φei that will allow obtaining
the electric potential at any point using the interpolation functions. In order to obtain
the DOFs (φei ) one must solve an equation A · φ = b. The building of A and b will be
explained later. First of all, the 2D problem will be explained and then the 3D.

Two dimensional nodal:
The 2D interpolation function is given by the following equation. Due to the fact that
nodal elements have the DOFs in the nodes, the interpolation requires a sum from 1 to 3,
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Figure 7: On the left side, the 2D geometry, the triangle. On the right side, the 3D geometry, the
tetrahedron.

each number corresponding to one node:

φe(x, y) =
3∑
i=1

W e
i (x, y)φei , (12)

where W e
i (x, y) are the interpolation functions and follow:

W e
i (x, y) =

1

24e
(aej + bejx+ cejy) j = 1, 2, 3 , (13)

where aej , b
e
j and cej are parameters given by (xei , y

e
i ) which are the location of the node i

for each triangle e. Moreover 4e is the surface of the triangle. Those coefficients are given
by:

ae1 = xe2y
e
3 − ye2xe3 be1 = ye2 − ye3 ce1 = xe3 − xe2

ae2 = xe3y
e
1 − ye3xe1 be2 = ye3 − ye1 ce2 = xe1 − xe3

ae3 = xe1y
e
2 − ye1xe2 be3 = ye1 − ye2 ce3 = xe2 − xe1

(14)

4e =
1

2
(be1c

e
2 − be2ce1)

Three dimensional nodal: As in the two-dimensional case, the 3D interpolation func-
tion is given by the following equation. As seen in Fig. 7, tetrahedron has 4 nodes and 6
edges. Therefore, this sum is from 1 to 4 each for every node:

φe(x, y, z) =

4∑
i=1

W e
i (x, y, z)φei , (15)

where the interpolation function W e
i (x, y, z) is:

W e
i (x, y, z) =

1

6V e
(aei + beix+ ceiy + dei z) . (16)

In the same way, as in the 2D case, V e is the volume of the tetrahedron. This volume and
the coefficients of the interpolation function are obtained from the nodes of the tetrahedron
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using:

aei =

∣∣∣∣∣∣
xei+1 xei+2 xei+3

yei+1 yei+2 yei+3

zei+1 zei+2 zei+3

∣∣∣∣∣∣ , (17)

bei =

∣∣∣∣∣∣
1 1 1
yei+1 yei+2 yei+3

zei+1 zei+2 zei+3

∣∣∣∣∣∣ , (18)

cei =

∣∣∣∣∣∣
1 1 1

xei+1 xei+2 xei+3

zei+1 zei+2 zei+3

∣∣∣∣∣∣ , (19)

dei =

∣∣∣∣∣∣
1 1 1

xei+1 xei+2 xei+3

yei+1 yei+2 yei+3

∣∣∣∣∣∣ , (20)

V e
i =

∣∣∣∣∣∣∣∣
1 1 1 1
xe1 xe2 xe3 xe4
ye1 ye2 ye3 ye4
ze1 ze2 ze3 ze4

∣∣∣∣∣∣∣∣ , (21)

where i4+k = ik and (xei , y
e
i , z

e
i ) give the position of the node i of the element e.

2.4 Edge elements

Similarly with the nodal elements, the main idea of edge elements is to obtain the coeffi-
cients Eei that will allow to obtain the electric field at any point using the interpolation
functions. In order to obtain the DOFs (Eei ) one must solve an equations A · E = b. The
building of A and b will be explained later. As before, the 2D case will be explained first
and the 3D thereafter.

Two dimensional edge:
Once the system is solved and the DOFs are obtained, one can recover the electric field
at any point of the domain using the same interpolation function. Since the triangle has
3 edges, the sum is from 1 to 3 one corresponding to each edge.

Ee(x, y) =

3∑
j=1

Ne
j (x, y)Eej . (22)

It is important to remark that for edge elements, the interpolation functions are now
completely different from the nodal. In fact, the interpolation functions for edge elements
(Ne

j ) are computed using nodal interpolation functions (W e
j ):

Ne
1 =

(
W e

1
~∇W e

2 −W e
2
~∇W e

1

)
le1 (23)

Ne
2 =

(
W e

2
~∇W e

3 −W e
3
~∇W e

2

)
le2 (24)

Ne
3 =

(
W e

3
~∇W e

1 −W e
1
~∇W e

3

)
le3. (25)

Here W e
i correspond to the basis functions of 2D nodal and lei is the length of the edge i

of the element e.
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Three dimensional edge:
In this case, the tetrahedron has 6 edges. Therefore, the interpolation function becomes a
sum from 1 to 6 each one corresponding to one of the edges:

Ee(x, y) =
6∑
j=1

Ne
j (x, y)Eej , (26)

where Ne
j are given by Eqs. 27-32 and Eej are the DOFs obtained by solving A · E = b.

Ne
1 =

(
W e

1
~∇W e

2 −W e
2
~∇W e

1

)
le1 (27)

Ne
2 =

(
W e

1
~∇W e

3 −W e
3
~∇W e

1

)
le2 (28)

Ne
3 =

(
W e

1
~∇W e

4 −W e
4
~∇W e

1

)
le3 (29)

Ne
4 =

(
W e

2
~∇W e

3 −W e
3
~∇W e

2

)
le4 (30)

Ne
5 =

(
W e

4
~∇W e

2 −W e
2
~∇W e

4

)
le5 (31)

Ne
6 =

(
W e

3
~∇W e

4 −W e
4
~∇W e

3

)
le6 (32)

2.5 Comparison between nodal and edge elements

The two key points of the comparison rely on the discontinuities of the EM fields and on
the necessity to do the gradient of the electric potential in order to obtain the electric field.
From the integral form of Maxwell equation’s, one can derive the interface conditions for
the electromagnetic fields. The final expressions are:

n12 × (E2 −E1) = 0 (D2 −D1) · n12 = ρs (33)

n12 × (H2 −H1) = js (B2 −B1) · n12 = 0, (34)

where ρs and js are the surface charge density and the surface current density of the in-
terface, n12 is a vector perpendicular to the surface that has its origin in media 1 and
its end in media 2. Let ⊥ be parallel to n12 (and perpendicular to the interface) and ‖
perpendicular to n12 (and contained in the interface). If ρs = 0 and js = 0, all components
of the EM fields are continuous. However, if ρs 6= 0 and js 6= 0, Eqs. 33 and 34 show that
D⊥ and H‖ are not continuous. Therefore, E⊥ and B‖ are not continuous also.

To sum up, when electromagnetic fields face an interface, tangential component of E
(E‖) and normal component of B (B⊥) are always continuous. However, E⊥ and B‖ are
not continuous when there is a density charge and a current density, respectively, on the
interface. When using nodal elements, all components are automatically continuous func-
tions. When solving discontinuous fields, one must add a penalization term to be able to
use nodal elements method. However, edge elements support discontinuities by construc-
tion and, therefore, are a better option [20].
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The second key point in the comparison is that the nodal elements output the electric
potential. Most of the times, the variable needed is the electric field. Therefore, when
using nodal elements one must do the −∇φ in order to obtain the E. Since the output φ is
a set of value and not a function, the gradient must be computed numerically. Therefore,
further errors are introduced in the solution. To sum up, for EM problems edge elements
are preferred over nodal elements.

2.6 Indexing

A good indexing rule is needed in order to keep control of the edges properties such as
the position and the element which the edges belong to. In this section, the indexing used
will be first explained in detail in 2D and thereafter extended to 3D problems. For both
cases, the indexing rule is based on having both a global and a local index.

Two Dimensions:

When a Mesh is created all nodes are numbered from 1 to the total number of nodes.
In order to keep track of the edges, a global and a local rule are set:

• Global Rule: Edges go from the lower possible node index to the second possible
lower node index.

• Local Rule: Local edges follow this table rule:

Table 1: Local indexing for 2D triangular elements.

Edgei nodeinitial nodeend

1 1 2
2 2 3
3 3 1

The best way to understand this rule is using an example. Figure 8 contains a very simple
case.

The global rule will be explained first. Starting from the node with index 1, it is connected
to the nodes 2, 3 and 4. Therefore, edge 1 goes from node 1 to node 2, edge 2 goes from
node 1 to node 3, ... When all connections beginning from node 1 are finished, comes
node 2. Node 2 is connected to node 1 and node 4. However, the connection from node 1
and 2 has been already made. Therefore, edge 4 goes from node 2 to node 4 and so on.
Therefore, the global indexing of this easy case is shown in Table 2.

Table 2: Global indexing for the easy example.

Global index 1 2 3 4 5

Initial node 1 1 1 2 3
End node 2 3 4 4 4
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Figure 8: Simple example to understand indexing. In green the element number, in black the node
index. The left box contains in red the indexes of the Global rule while the right one contains the
indexes of the Local rule in blue colour.

As happened with the nodes indexing, the creation of the mesh outputs a matrix where
each column contains the nodes’ index of each element. In PETGEM this matrix is called
elemsN and an example of this matrix for this easy system is given in Eq. 35

elemsN =


Elem1 Elem 2

position 1 1 4
position 2 2 3
position 3 4 1

 (35)

The explanation of the local indexing will start with the second element since the first
one can be confusing due to the fact that node 1 and node 2 are located in position 1
and 2. The second element contains node 4, 3 and 1. According to Table 1, edge 1
goes from the 1st position to the 2nd. Therefore, edge 1 of element 2 goes from node
4 to node 3. Edge 2 of element 2 goes from position 2 to position 3 (from node 3 to
node 1) and finally, edge 3 of element 2 goes from position 3 to position 1 (from node 1
to node 4). The same algorithm is applied to the 1st element and can be checked in Fig. 8.

Three Dimensions:

For the 3D case, the global rule is the same as in 2D. That means that it uses the node’s
index given when meshing and order them from the lowest possible to the second lowest
possible.

On the other hand, the local rule changes due to the fact that now there are 4 nodes
per tetrahedron instead of the 3 of the triangle. The local rule used is given in Table 3.
This local indexing rule can be observed in Fig. 9 with a single element example.

2.7 Formulation of the problem. A and b formulas

The formulation of FEM requires a large amount of time and it is out of the scope of this
thesis. Here, the equations to be solved are introduced and the interested reader is referred
to chapter 8 of [21] for details on the formulation. Only the edge elements formulation
will be explained.
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Table 3: Local indexing for 3D tetrahedra elements.

Edgei nodeinitial nodeend

1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4

Figure 9: Local indexing rule example in a single tetrahedron.

The best way to understand the formulation is by an example. The example used will be
the FEM formulation of the electromagnetic differential equation that PETGEM solves
which is:

(∇×∇×+iwµσ) Es = −iwµ 4σ Ep (36)

The derivation of this formula and the interpretation of its parameters will be given in
Section 3). The FEM formulation of this differential equation is given by:

(Ke
jk + iwµσM e

jk)︸ ︷︷ ︸
A

{Eek}︸ ︷︷ ︸
x

= −iwµ4σ{Rek}︸ ︷︷ ︸
b

, (37)

where {Esk} is the vector of the DOFs, {Rek} is a vector that is integrated numerically,
and Ke

jk and M e
jk are called the Stiffness and the Mass matrix respectively. They have

different forms for the 2D and the 3D case as discussed in the following two paragraphs.

Two dimensional formulation:

In 2 dimensions, the stiffness and mass matrices are given by:

Ke
ij =

∫∫
we

(∇×Ne
i ) · (∇×Ne

j ) dS

M e
ij =

∫∫
we

Ne
i ·Ne

j dS.

(38)
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It is very important to note that the FEM formulation integrates the operators of the dif-
ferential equation all over the domain. These two integrals can be computed analytically
for rectangular and triangular elements. However, they need to be computed numeri-
cally for quadrilateral elements. For the triangular discretizations, these two integrals are
computed by:

Ke
ij =

lei l
e
j

4e
(39)

M e
11 =

(le1)2

244e
(m22 −m12 +m11)

M e
22 =

(le2)2

244e
(m33 −m23 +m22)

M e
33 =

(le3)2

244e
(m11 −m13 +m33)

M e
21 = M e

12 =
le1l

e
2

484e
(m23 −m22 − 2m13 +m12)

M e
31 = M e

13 =
le1l

e
3

484e
(m21 −m11 − 2m23 +m13)

M e
32 = M e

23 =
le2l

e
3

484e
(m31 −m33 − 2m12 +m23) ,

(40)

where mij = bei b
e
j + cei c

e
j . It is important to remark that these matrices are obtained for

each element e. Since the discretization is triangular, there are three edges per element
and therefore three DOFs per element. Consequently, the matrices are 3x3. The global
matrix A is n x n where n is the total number of DOFs in the whole mesh. The computa-
tion of the global matrix A is not trivial since the positions of the elements’ matrices must
be allocated in the global matrix. The discussion of the building of the matrix A and the
vector b will be given in the subsection 2.8.

Three dimensional formulation

Equivalent to the 2D case, in 3D the stiffness and mass matrices are given by:

Ke
ij =

∫∫∫
we

(∇×Ne
i ) · (∇×Ne

j ) dV

M e
ij =

∫∫∫
we

Ne
i ·Ne

j dV.

(41)

For the tetrahedral elements that will be used in this thesis, the stiffness matrix is given
by:

Ke
ij =

4lei l
e
jV

e

(6V e)4
[(cei1d

e
i2 − cei2dei1)(cej1d

e
j2 − cej2dej1)

(dei1b
e
i2 − dei2bei1)(dej1b

e
j2 − dej2bej1)(bei1c

e
i2 − bei2cei1)(bej1c

e
j2 − bej2cej1)].

(42)

The mass matrix for tetrahedral elements is now 6x6 since there are six edges (DOFs) per
element. There is no general formula to describe all 36 terms of the mass matrix but it
could be defined with 21 formulas. Those 21 formulas to describe M e

ij will not be written
in this thesis because it is out of the scope but they can be found in page 301 of [21].
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2.8 Assembly of A and b

This subsection explains the assembly of the global matrix Aij from the Stiffness Ke
ij and

Mass M e
ij matrices for each element; and the building of global array b from the numerical

integration of Rek. Both the building of A and b rely on the indexing rules that have been
set before. For a better understanding, the explanation will be started with the building
of b. Moreover, all explanations will be only focused on the 2D case for its simplicity. The
3D case can be extracted from the 2D.

b array

It is common to use an initial profile when solving a differential equation in FEM. This is
the case of PETGEM’s main equation:

(∇×∇×+iwµ(σ − σp)) Es︸︷︷︸
Result of the computation

= −iwµ (σ − σp) Ep︸︷︷︸
Initial Profile

The initial profile is always contained in the b array. As Ke
ij and M e

ij are the operators
integrated over the whole domain, Rek of Eq. 36 is the integral over the whole domain of
Ep. In fact, Rek is given by:

Rek =

∫∫
we

Ne
k ·Ep. (43)

This integral can sometimes be computed analytically depending on the shape of Ep.
However, for a general purpose, this integral will be done numerically using Gaussian
quadrature [22]. The main idea behind Gaussian quadrature is to compute an integral of
a function as a sum of this function evaluated in some points multiplied by some weights.
The choice of points to use and their weights rely on the shape of the integral domain.
In this 2D case, the integrals are over triangles. The repository [22] provides a large set
of Gaussian points locations (ri), it’s weights (weight(i)) and the formula to transform
the locations from a unit triangle to any arbitrary triangle. Introducing the Gaussian
quadrature approximation, Rek becomes:

Rek =

∫∫
we

Ne
k ·Ep '

# Guass Points∑
i=1

weight(i) Ne
k(ri) ·Ep(ri) (44)

Once these computations are finished, Rek is obtained where e is the index of the element
and k = 1, 2, 3 is the index of the DOF (edge). Following the specific problem that is being
solved, it is defined bek ≡ −iwµ (σ − σp)Rek.

Now, bek can be computed for all e and k. However this elements must be allocated
in the global array b. In order to get a better understanding of the allocation process, the
simple example used in the indexing section (Fig. 8) will be used as well. The allocation
process depends on the local indexing and, also, on a variable not mentioned yet called
EdgesN. This variable and elemsN (Eq. 35) are part obtained on the Preprocessing of
the Mesh as it will be explained later. The information needed to allocate this specific
problem is contained in Fig. 10:

This figure exemplifies the allocation process of bek in the global array b. It is important
to remark that since the mesh is based on 2 elements and 5 edges, the global array b will
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Figure 10: On the left side, the local indexing of the easy example. On the right side, the allocation
process with the matrix edgesN highlighted in yellow.

have 5 components. This is a general rule, the length of b is the number of DOFs. Starting
from the 1st element, the left figure shows that the first edge goes from node 1 to node 2.
Looking on the edgesN matrix, from 1 to 2 corresponds to the global edge 1. Therefore, b11
goes with a + sign to the first position of the global array b. The + sign is due to the fact
that both the local and the global indexing go from 1 to 2. If one went from 1 to 2 and the
other from 2 to 1 it would correspond a - sign. The second edge of the first element goes
locally from 2 to 4 and it corresponds in the matrix edgesN to the 4th position. Therefore,
b12 goes to the 4th position of b with a + sign. The 3rd edge of the 1st element goes from
node 4 to node 1. The 3rd position of edgesN goes from 1 to 4. In this case, one is from 1
to 4 and the other is from 4 to 1. Therefore, b13 goes to the the 3rd position of b with a -
sign. Once the first element is finished, it is time for the second and last element. Its 1st

edge goes from 4 to 3 and the 5th position of edgesN goes from 3 to 4. Therefore, b21 goes
to the 5th position with a - sign. The second edge goes from 3 to 1 that corresponds to
the second position of edgesN that is from 1 to 3. Therefore, b22 goes to the 2nd position
with a - sign. Finally, edge 3 goes from 1 to 4 as the 3rd position of edgesN. Therefore, b23
is added with a + sign to the −b13 that was already in the 3rd position of edgesN.

Matrix A

To sum up, the equation that follows the stiffness matrix (Ke
ij) for 2D is in Eq. 39

and in 3D in Eq. 41. Moreover, the mass matrix (M e
ij) follows in 2D Eq. 40 and in 3D is

given in page 301 of [21]. Once Ke
ij and M e

ij can be computed for both 2D and 3D, Aeij is
obtained using Eq. 45:

Aeij = Ke
ij + iwµ(σ − σp)M e

ij (45)

Once Aeij is known for every element, it is time to allocate this matrices in the global
matrix A that is a squared matrix with dimension number of edges (DOFs). As happened
with the assembly of b, the signs of the elements must be taken into account. In the
assembly of A is easier to include the signs just before the allocation and to do so it is
required the function Signs given in Eq. 46

Sei =
nodeei2 − nodeei1
|nodeei2 − nodeei1|

(46)

where i is the edge index that joins nodeei1 with nodeei1 of the element e. Afterwards, aeij
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is defined as the element that will be allocated containing the signs analysis that is given
by:

aeij = AeijS
e
i S

e
j (47)

In order to allocate aeij , a matrix called connectivity (will be shorted to “elemsE”) is
needed. This matrix specifies which edges belong to each element and it is very similar to
the matrix elemsN that was introduced before in Eq. 35. The computation of “elemsE”
is out of the scope of this thesis but for the two-triangles example, this matrix is:

elemsE =


Elem1 Elem 2

position 1 1 5
position 2 4 2
position 3 3 3

 (48)

Firstly, the general rule will be given and then it will be exemplified using the two-triangles
example. Defining the column e of the matrix “elemsE” as (k, l,m), then the coefficient
aeij is allocated following the rule:

a11 → (k, k) a12 → (k, l) a11 → (k,m)

a21 → (l, k) a22 → (l, l) a23 → (l,m)

a31 → (m, k) a32 → (m, l) a33 → (m,m)

Assuming that for this example the matrices a1 and a2 for each element are given by:

a1 =

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

 a2 =

Λ11 Λ12 Λ13

Λ21 Λ22 Λ23

Λ31 Λ32 Λ33

 (49)

The column 1 of “elemsE” is (1, 4, 3) and the second column is (5, 2, 3). Therefore, the
allocation of this problem is the following one:

A =


λ11 0 λ13 λ12 0
0 Λ22 Λ23 0 Λ21

λ31 Λ32 λ33 + Λ33 λ32 Λ31

λ21 0 λ23 λ22 0
0 Λ12 Λ13 0 Λ11

 (50)

Knowing A and b, one can solve the equation A·x = b by inverting the matrix A: x = A−1b.
The most important requirement is that the determinant of a matrix must be different
to zero in order to be able to invert that matrix (det(A) 6= 0). There are many different
methods to numerically invert a matrix and which one to use depends on the matrix itself.
However, this topic is out of the scope of the thesis and no further information will be
addressed.
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3 PETGEM

3.1 Brief description of PETGEM

The Parallel Edge-based Tool for Geophysical Electromagnetic Modelling (PETGEM) is
a Python HPC scalable tool based on the finite element method. This code contains more
than 8000 lines with many different modules such as the preprocessing, the assembly,
the solver, the postprocessing, ... PETGEM has been developed as open-source (under
GPLv3 license) at the Department of Computer Applications in Science & Engineering
(CASE) of the Barcelona Supercomputing Center (BSC). PETGEM solves the marine
Controlled-Source Electromagnetic method (CSEM) which is an important technique for
reducing ambiguities in data interpretation for hydrocarbon exploration. In order to solve
CSEM, one must solve Maxwell’s equations 51 where the harmonic time dependence e−iwt

is omitted.

∇×E = iwµ0H ∇×H = Js + σE , (51)

where w is the frequency, σ the conductivity and Js the distribution of source current
which is considered a punctual source. Using a perturbation approach, the total electric
field is written as a sum of a primary field (the known term) and a secondary field (the part
that will be computed) E = Es + Ep. For a general layered Earth model, Ep is computed
using a Hankel transform filters [23].

The same procedure can be applied to electric conductivity. Following the common geo-
physics notation, σ = σs +4σ, where 4σ is the electrical conductivity of the area where
the focus is located. Therefore, σs will change along the sediments. On the focus zone it
will be 0 and on the other zones will be given by σs = σreal −4σ. One can get the final
equation to solve:

∇×∇×Es + iwµ0σEs = −iwµ0 4σ Ep (52)

PETGEM is an HPC code due to the fact that edge elements offer a good scalability and
it is exploited through the Python Package Petsc4py [24].

3.2 How to use PETGEM

In order to install PETGEM, one must follow the guide [25]. On the following paragraphs,
a guide to understand PETGEM is given. Those instructions are the result of the learning
process of the multiple simulations carried out using this code. The tutorial is divided in:
preprocessing, kernel and visualization of the output.

3.2.1 Preprocessing

In order to run the preprocessing, one needs to prepare a file called “preprocessing-
Params.py”. An example of this file is found below:

preprocessing = {

# ---------- Mesh file ----------

’MESH_FILE’: ’/home/marc/Dropbox/BSC/gmsh/cube/cube.msh’,

# ---------- Material conductivities ----------

’MATERIAL_CONDUCTIVITIES’: [1.0],
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# ---------- Receivers position file ----------

’RECEIVERS_FILE’: ’/home/marc/Dropbox/BSC/gmsh/cube/cube.txt’,

# ---------- Path for Output ----------

’OUT_DIR’: ’/home/marc/petgem-0.30.43/PreprocessingOutput/’,

}

The four elements needed are now introduced. The first one is the mesh file which has
already been explained how to create it. The second element is the material conductivities.
This part of the code is important to solve geophysical problems where there are different
layers with different conductivities but for this thesis, the plasma will be considered to
have a homogeneous conductivity of 1.0 from now on. The third option is the Receivers
file which must be a txt containing the X, Y and Z coordinates of each element separated
by a tab. The following example contains just 3 receivers:

0.000 0.000 0.000

1.000 0.000 0.000

0.000 1.000 0.000

On appendix C there are two Matlab algorithms to create homogeneous distributions of
receivers for both a cube and a cylinder. Finally, the last variable needed is the output
directory where there will be stored the code output’s.

Once the file “preprocessingParams.py” is ready, it is time to execute the file “run pre-
processing.py”. To do so, one must execute on the computer’s console:

python3 /....../run_preprocessing.py /....../preprocessingParams.py

where /....../ refers to specify the folder where those files are.

3.2.2 Kernel

The file “kernel.py” also requires of two auxiliary parameters files called “pets.ops” and
“modelParams.py”. The first one contains parameters of the solution which are out of
the scope of this thesis but further information can be found on [26]. The second file is
very similar to “preprocessingParams.py”. It contains variables that will be used in the
computations. Those variables can be separated into two groups: the ones that define Ep
and the ones related to the mesh. The elements in the second subgroup are the output of
the preprocessing. Finally, to run the kernel one must write on the console:

mpirun -n X python3 /....../kernel.py -options_file /....../petsc.opts

/....../modelParams.py

where /....../ refers to specify the folder where those files are and X the numbers of cores
where the job will be parallelized.

3.2.3 Visualization

PETGEM does not give the visualization by itself. However, it generates output files with
the electric responses at receivers positions available in the formats ASCII, PETSc and
Matlab. Appendix C contains a simple Matlab script created in this thesis work in order
to view the output of PETGEM.
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4 Results

The thesis work consists of following four steps: to understand and learn EFEM theory,
to understand the workflow and the scripts of PETGEM code, to check the capability to
implement different initial profiles to PETGEM and to change the equations that PET-
GEM solves and introducing the time integration of the equations as summarized in this
chapter:

Learn EFEM→ Understanding PETGEM→ Check initial profile→ Change equations

The most time demanding part of this thesis is understanding and being able to modify
PETGEM because it is an HPC code with more than 8000 lines and many different modules
such as the preprocessing, the assembly, the solver, the postprocessing, ... That is why this
current thesis has stopped at the changing equations steps, where some research has been
done but none remarkable result of changing the equations has been achieved. However,
there has been many important results and achievements that will be described in the
following lines.

4.1 FEM Mesh Creation

The finite element method mesh must be created using Gmsh [27]. This software is open-
source and it can be used both with its graphic interface or via script-console. A 2D
example of a rectangular mesh generation using Gmsh is given in the following lines.

lc=0.1; //radius length of vertex

//Point(i) = {x, y, z, radius of the vertex};

Point(1) = {0, 0, 0, lc};

Point(2) = {1, 0, 0, lc} ;

Point(3) = {1, 3, 0, lc} ;

Point(4) = {0, 3, 0, lc} ;

//Line(k) = {i,j}; From point i to j.

Line(1) = {1,2} ;

Line(2) = {3,2} ;

Line(3) = {3,4} ;

Line(4) = {4,1} ;

//Line Loop Closes the area.

Line Loop(1) = {4,1,-2,3} ;

//minus since line2 is 3-2 and not 2-3

Plane Surface(1) = {1} ;

This code only creates the geometry to be divided in elements. To create the mesh click on
Modules>Mesh>Define>2D (or 3D for those geometries). By default, this configuration
creates meshes with triangular, hexahedra, pyramid, ... elements. In order to make the
mesh only with a specific type of elements, one must go to Tools>Options>Mesh>elements
and unselect all except the one wanted.

As it has been mentioned before, the refinement process is an important step to optimize
this method. Gmsh documentation provides a detailed tutorial on different strategies to
refine a mesh [28]. Appendix A provides an example of refinements over a point, a line
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
.

Figure 11: Set of different geometries obtained using Gmsh. The left panels are the homogeneous
meshes while the right ones are the refined meshes.

and a box. On https://github.com/marcfusterr/Gmsh_Scripts there are uploaded
different codes to generate 2D geometries (circle and square) and 3D geometries (cylinder
and cube) developed in this thesis work. All codes have both a homogeneous and a refined
mesh. Figure 11 shows two cases of the distribution of the mesh density; homogeneous and

https://github.com/marcfusterr/Gmsh_Scripts


4.2 Implementation of initial profile 24

inhomogeneous in the simulation volume. They are plotted from PETGEM output data
using the Gmsh graphic interface. The work contributes to the visualization of the data
using Paraview [29] so that the GUI analysis can be made directly from the visualization.
The capability of the arbitral choice of the mesh density concentration cases the simulations
according to the physics problems to be solved.

4.2 Implementation of initial profile

Before studying the feasibility of applying PETGEM to plasma physics, the ability to im-
plement initial profiles to PETGEM must be checked. This subsection contains a bench-
mark of the implementation of an initial profile and also explains how to get the velocity
field from the velocity potential.

4.2.1 Benchmark

The implementation of an initial profile is not a trivial task in PETGEM. That is be-
cause PETGEM always uses the same initial profile: the electric field created from CSEM
antenna using the Hankel filters mentioned before. Therefore, the code is not prepared
for the initial profile to be changed. Changing the initial profile in PETGEM requires
introducing the function to be implemented in both the “postprocessing.py” and “assem-
bler.py”. Moreover, the choice of an initial profile must go with a choice of a good set of
receivers in order to correctly appreciate the output.

The initial profile ~u = [−2sin(y), 2sin(x), 0] has been selected as a benchmark to check if
the initial profiles are well implemented as shown in Fig. 12. The flow of the vector field
of ~u shows the rotative dynamics of the fluid.
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Figure 12: On the left side: Top panels show the analytical function ~u. Bottom panels show the
implemented function obtained using PETGEM’s output data. On the right side: alternative view
of the initial profile ~u = [−2sin(y), 2sin(x), 0] from PETGEM’s output data.

4.2.2 Initial electrical field for magnetically confined plasma.

When the electric field is conservative, the electric field is determined by the gradient
of the electrostatic potential, i.e. ~E = −∇φ. Therefore, a script has been created that
automatically obtains ~E from any analytical φ by computing the gradient analytically
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using the Python package Sympy [30]. The cylindrical geometry is used in mirror plasma
confinement devices such as SLPM [31], PANTA [32], etc. The plasma confined in the
cylindrical geometry is a useful approach to study the plasma instabilities. The density
of the simulation grid can be arbitrarily chosen in the simulation domain. The location
of the mesh concentration can be chosen depending on the physics problem to be aimed
to study. Figure 13 shows the electric field obtained from φ = exp(−(x/1.5)2 − (y/1.5)2))
using the automatic gradient script.
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Figure 13: On the right hand, output of the automatic gradient script obtained from the electric
potential φ = exp(−(x/1.5)2 − (y/1.5)2) which is plotted on the left part.

4.3 Steady state plasma

The full wave equation in a magnetically confined plasma with an antenna current as a
boundary condition is given by Eq. 53:

∇×∇×E− w2

c2
E =

4πwi

c2
(Jp + Ja)

Jp(r) =

∫
dr′σ(r, r′)E(r′)

(53)

where Ja is the current of the antenna and σ is the conductivity tensor. This equation
has the same shape as the one that PETGEM solves. However, this equation is the
wave equation with a boundary condition corresponding to the current density introduced
by the antenna while Eq. 52 is the perturbation solution of a wave propagating in the
earth. Figure 14 shows the initial profile of the current density J = Jp + Ja = ẑ/f(r)
along with it’s electrical response, where f(r) = (1 + (r/a)2Λ)1+1/Λ and a = 0.25m is the
radius of the cylinder and Λ = 4 [33]. The implemented current profile is a reasonable
approach to compute the initial profile of the current density and the electric field for fusion
plasmas [34]. The time variation of the current density will be implemented in the future
in order to investigate the interactions between the effect of the antenna and the plasma
response. The output ~E which is solved from ~J can be obtained by PETGEM calculation.
However the initial profile implemented here is time-independent quantity, and it does not
have a function of the coefficient of the time-frequency. The PETGEM output ~E shows
zero (or numerical noise). It is as expected and it confirms the implementation and the
PETGEM calculation have been performed correctly without generating any unexpected
errors.
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Figure 14: Initial profile of the antenna current density to be solved by the full wave equation.
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5 Conclusions

The study of the assessment of this new research line of the EFEM application to fusion
plasma physics has been successfully carried out. Due to the complex dynamics of the
plasma, high performance simulations are required. Therefore, this work demonstrates
the capability to perform and modify a large parallel code in the supercomputer Marenos-
trum. The edge finite element method theory has been studied and has been found to
be more useful than the nodal finite element method for electromagnetic problems and
therefore, for fusion problems.

Moreover, this work demonstrates the generation of the simulation mesh for finite el-
ement method for fusion plasma in the different geometries such as squares, circles,
cubes and cylinders. The location and the density of the mesh concentration can be
arbitrarily adopted according to the physics problem which is aimed to investigate in
a user-friendly manner using the codes that have been uploaded to the Github link
https://github.com/marcfusterr/Gmsh_Scripts. The implementation of the initial
field of any quantities such as electric field, and the application of the reasonable current
profile which is specifically aimed for the fusion plasma research have been carried out.

https://github.com/marcfusterr/Gmsh_Scripts
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6 Future Work

The future steps of the work are to go beyond the calculation of the steady state plasma
and implement the time integration of the plasma dynamics. The long-term objective is to
solve the magnetohydrodynamic (MHD) which is the combination of the electromagnetism
system i.e. Maxwell’s equations and the fluid system i.e. Navier-Stokes equation. The
primitive approach is to develop the fluid modeling part considering an incompressible
(∇ · u = 0), diffusive model: ∂u

∂t = −ν ∇×∇× u which is ongoing to be implemented in
PETGEM. Once the diffusive model is finished, Navier-Stokes equation should be imple-
mented and, afterward, MHD equations. The development team of PETGEM is currently
introducing a more complex numerical scheme, the higher order elements. This scheme
consists of polynomial interpolation functions rather than linear interpolation functions.
Therefore, an important future step is to adapt all the work done to the new PETGEM
scheme.
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A 3D Mesh creation and Refinement

This code summarizes how to create geometries (points, lines, surfaces and volumes) and
how to create an inhomogeneous mesh by refining over points, lines, surfaces and volumes.
With those basic geometries, one can adapt them to create different objects.

lc=0.1; //radius length of vertex

// lower surface

Point(1) = {0, 0, 0, lc};

Point(2) = {1, 0, 0, lc} ;

Point(3) = {0, 1, 0, lc} ;

Point(4) = {1, 1, 0, lc} ;

Line(1) = {1,2} ;

Line(2) = {2,4} ;

Line(3) = {4,3} ;

Line(4) = {3,1} ;

Line Loop(1) = {1,2,3,4} ;

// minus since line2 is 3-2 and not 2-3

Plane Surface(1) = {1} ;

//uper surface

Point(5) = {0, 0, 1, lc};

Point(6) = {1, 0, 1, lc} ;

Point(7) = {0, 1, 1, lc} ;

Point(8) = {1, 1, 1, lc} ;

Line(5) = {5,6} ;

Line(6) = {6,8} ;

Line(7) = {8,7} ;

Line(8) = {7,5} ;

Line Loop(2) = {5,6,7,8} ;

// minus since line2 is 3-2 and not 2-3

Plane Surface(2) = {2} ;

//join both surface

Line(9) = {1,5} ;

Line(10) = {2,6} ;

Line(11) = {3,7} ;

Line(12) = {4,8} ;

Line Loop(3) = {9,5,-10,-1}; Plane Surface(3) = {3};

Line Loop(4) = {2,12,-6,-10}; Plane Surface(4) = {4};

Line Loop(5) = {3,11,-7,-12}; Plane Surface(5) = {5};

Line Loop(6) = {-4,11,8,-9}; Plane Surface(6) = {6};

Surface Loop(100) = {1,2,3,4,5,6};

Volume(101) = {100};

Physical Volume ("Seds", 1) = {101}; // This line is necessary for

// PETGEM in order to understand each layer.
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// #################################################################

// # Refine a Point and or a line #

// #################################################################

// points to increase density

Point (11) = {0.5,1,0.5,lc};

Field[1] = Attractor;

//list of the points where to have a higher density

Field[1].NodesList = {11};

//list of lines where to have a higher density

Field[1].EdgesList = {9};

Field[2] = Threshold;

Field[2].IField = 1;

Field[2].LcMin = lc / 10.;

Field[2].LcMax = lc;

Field[2].DistMin = lc / 4.;

Field[2].DistMax = 2.*lc;

// #################################################################

// # Refine a rectangle and or a solid box #

// #################################################################

Field[3] = Box;

Field[3].VIn = lc / 10;

Field[3].VOut = lc;

Field[3].XMin = 0.25;

Field[3].XMax = 0.75;

Field[3].YMin = 0.25;

Field[3].YMax = 0.75;

Field[3].ZMin = 1.;

Field[3].ZMax = 1.;

//by setting Min=Max in 1 dimension, we get a rectangle

//if for all dimensions Min different Max, one gets

//a solid cube

// #################################################################

// # Join all Fields #

// #################################################################

// Use minimum of all the fields as the background field

Field[11] = Min;

Field[11].FieldsList = {2,3};

Background Field = 11;

B Algorithm’s to create a homogeneous distribution of re-
ceivers

The first algorithm is used to create an homogeneous distribution of receivers in a unitary
box from -0.4 to 0.4 in all directions. To scale the receivers just change the variable
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ScaleFactor.

ScaleFactor=100;

xtarget=[0.1:0.1:0.9];

ytarget=[0.1*ones(1,9)];

for irepeat=1:8

xtarget=[xtarget,0.1:0.1:0.9];

ytarget=[ytarget,0.1*(irepeat+1)*ones(1,9)];

end

[a,lengthxtarget]=size(xtarget);

xtarget2=xtarget;

ytarget2=ytarget;

ztarget2=0.1*ones(1,lengthxtarget);

for irepeat=1:8

xtarget2=[xtarget2,xtarget];

ytarget2=[ytarget2,ytarget];

ztarget2=[ztarget2,0.1*(irepeat+1)*ones(1,lengthxtarget)];

end

[a,lengthxtarget2]=size(xtarget2);

receivers = zeros(lengthxtarget2, 3);

receivers(:,1)=xtarget2-0.5;

receivers(:,2)=ytarget2-0.5;

receivers(:,3)=ztarget2-0.5;

receivers=ScaleFactor*receivers;

dlmwrite(’/home/marc/Dropbox/BSC/gmsh/cube/cube.txt’,...

receivers,’delimiter’,’\t’,’precision’,’%.6e’)

The second one is equivalent but for a cylinder. “R” changes the radius, “L” the length
and “n” the number of layers of receivers in the Z direction

R=23/100;

L=96/100;

n=5;

xtargetAux=R*[1,0.5,0.5,0,0,0,-0.5,-0.5,-1,0.25,0.25,-0.25,...

-0.25,0.15,0.15,-0.15,-0.15,0,0,0.25,-0.25];

ytargetAux=R*[0,0.5,-0.5,1,0,-1,0.5,-0.5,0,0.25,-0.25,0.25,...

-0.25,0.15,-0.15,0.15,-0.15,0.25,-0.25,0,0];

[nothing,lengthAux]=size(xtargetAux);

zdiv=linspace(0,L,n);

zAux=ones(1,lengthAux);

xtarget=xtargetAux;

ytarget=ytargetAux;

ztarget=zeros(1,lengthAux);

for i=1:n-1

xtarget=[xtarget,xtargetAux];

ytarget=[ytarget,ytargetAux];

ztarget=[ztarget,zAux*zdiv(i+1)];

end

[a,lengthtargets]=size(xtarget);

receivers = zeros(lengthtargets, 3);

receivers(:,1)=xtarget;

receivers(:,2)=ytarget;

receivers(:,3)=ztarget-L/2;

dlmwrite(’/home/marc/Dropbox/BSC/gmsh/cylinder/cylinder.txt’,...

receivers,’delimiter’,’\t’,’precision’,’%.6e’)
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C Visualization Matlab script

load(’/home/marc/petgem-0.30.48/examples/Output/Matlab/Ep.mat’);

load(’/home/marc/petgem-0.30.48/examples/Output/Matlab/Es.mat’);

load(’/home/marc/petgem-0.30.48/examples/Output/Matlab/Et.mat’);

receivers=load(’/home/marc/petgem-0.30.48/PreprocessingOutput/receiversPETGEM.txt’);

figure

quiver3(receivers(:,1), receivers(:,2), receivers(:,3),

real(Ep(:,1)),real(Ep(:,2)),real(Ep(:,3)))

hold on

scatter3(receivers(:,1), receivers(:,2), receivers(:,3),’.’)

hold off
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