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Universitat Autònoma de Barcelona





Abstract

Motivated by its possible application in fusion materials research, we validate the

linear scaling approach of density functional theory (DFT) for large metallic sys-

tems using the BigDFT code. After proving its validity and applicability in terms

of accuracy and computational cost, a real application to fusion materials research

is presented. The single vacancy formation energy of a Tungsten bcc lattice is

analyzed and compared to the state-of-the-art results. In reference calculations

reported in the literature, those values are obtained using the traditional cubic ap-

proach of DFT with a relatively large unit cell containing the vacancy and a small

k-points grid. The use of the Monkhorst-Pack k-points grid allows to correctly

take into account the periodicity of the cell and thus to perform simulations that

are equivalent to many repeated copies of the unit cell. In this way one can simu-

late system sizes that lead to well converged results. However this is based upon

one assumption: the effect introduced by the vacancy does not reach distances

larger than half the unit cell length. The linear scaling approach has allowed us to

perform Γ-only calculations with system sizes that are equivalent to those using

a k-point grid. This has enabled us to analyze the size dependence of the defects

in more detail and provided us with new insights regarding the validity of the

aforementioned assumption.
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1 | Introduction

The rapid increase of the energy demand over the world has become an urgent

and critical issue for humanity. For different causes, the current energy extraction

methodologies are not real candidates to fulfill the future needs. This is the main

reason why over the last decades the scientific community has been developing

big projects on fusion power reactors. Fusion energy has lots of advantages and

benefits over the other approaches, providing a sustainable, secure and safe solu-

tion. However, because of the huge complexity and extreme conditions required to

achieve a controlled fusion reaction, no design has yet achieved positive net energy

gain. The study of suitable materials to be used on the reactor walls is one of the

challenges that still needs to be overcome.

In fusion reactors, high-energy neutrons are produced in nuclear reactions be-

tween fusion fuel particles. When colliding with the material wall of the reactor,

these neutrons can cause damage, leading to, for example, transmutation of atoms

or creation of radiation defects. Understanding of such defects both qualitatively

and quantitatively is a key point of fusion materials research, since even very small

defects could evolve over time into big clusters of defects and eventually change

the microstructure of the material. At this point, the lifetime of the material could

be dramatically reduced or it could behave unexpectedly.

Unfortunately, the lack of a suitable high-flux source of high-energy neutrons (∼
14.1 MeV) required to reproduce the conditions found inside a reactor vessel makes

it impossible to experimentally test with different materials. Furthermore, long-

term effects would only be appreciable after many years of experimental testing.

Therefore, it is needed to use various mathematical models and implement them in

computer codes to simulate those situations at various temporal and spatial scales.

The analysis of the obtained results may give to the community the required insight

in order to properly predict which materials would be more appropriate to form
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the reactor wall and to foretell its degradation rate.

The study of such fusion (and fission) materials started in the early 1970’s and

many different approaches have been studied until now. A particular theoretical

model, known as Density Functional Theory (DFT) [1], dominates nowadays at

small scales (from tens to some hundred atoms) thanks to its good balance between

accuracy, generality and scalability with respect to the system size. In particular,

DFT-based simulation codes show a very good performance not only for small

finite systems but also for large and purely periodic ones. The good performance

in the latter case is thanks to a special and widely used technique known as k-point

sampling, which takes advantage of the periodicity and only considers a minimal

cell.

Unfortunately, three main issues make fusion material simulations hard and

computationally expensive. Firstly, as the system size or the minimal cell size

for periodic systems grow, DFT simulations become unfeasible even running on

supercomputers, since it scales to the power of 3 with the system size. Secondly,

metallic systems, which are the most promising candidates for the fusion reactor

walls, represent further difficulty in DFT simulations due to their zero HUMO-

LUMO gap [2]. Finally, the fact that a radiation defect breaks the periodicity of

a perfect lattice hinders the use of the k-points method and demands the use of

big cells. These reasons impose a maximum size for DFT simulations on fusion

material systems of around some hundred atoms and force scientists to make extra

assumptions or approximations in order to overcome this restriction.

In the last few years DFT-based simulation codes that exhibit linear scaling

with respect to the system size have been developed. They involve an additional

assumption in the theoretical background. Known as nearsightedness [3], this

approximation basically imposes a cutoff radius for each particle, meaning that

it only ”sees” information from particles closer than this radius. Far from being

questionable, this assumption has been theoretically proven to be well justified.

While the convergence and applicability of this linear scaling approach have already

been shown with non-metallic system, no code has yet proven to be reliable and

accurate for metallic ones.

The first objective of this thesis is to validate the linear scaling DFT approach

for metallic systems up to a few thousand atoms using the BigDFT code [4], which

presents an implementation of an universally applicable linear scaling algorithm.

To do so, a particular metallic crystal structure, namely a perfect Tungsten bcc
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lattice, will be tested for different sizes with both cubic and linear approaches. This

metal has been chosen mainly due to its relevance in the fusion material research

field. As an example, its good behavior under radiation has lead to its future

usage in the material wall of the ITER nuclear fusion reactor [5]. Although other

materials have been also tested, this thesis focuses on the Tungsten simulations.

From the aforementioned simulations, a set of material properties will be derived

and compared both qualitatively and quantitatively.

Once the viability of the linear scaling approach of DFT for the Tungsten

system is proven, the second objective is addressed: perform electronic structure

calculations with interest to the fusion community with the linear scaling version

of BigDFT for Tungsten. For this purpose we have chosen the monovacancy point

defect in a Tungsten lattice as a target structure. This phenomena may occur

when a high-energy neutron collides with the material wall of the fusion device

and results in the possible migration of an atom from its usual place, thus leaving a

vacancy. The key quantity associated to the vacancy defect is the so-called vacancy

formation energy (VFE) and it is calculated using the total energy of the perfect

and defect structures. In order to complete the study, we have also investigated

another point defect, namely the self interstitial atom (SIA). Unfortunately and

mainly due to CPU-time issues, we have not been able to gather enough SIA

simulation results to include its analysis in this thesis. We expect to obtain these

results in the upcoming months and to add them to the publication in preparation.

Even though accurate values of VFEs for a wide range of materials were already

published during the last decade using DFT codes (see for example [6]), we want

to re-investigate this topic with our linear scaling approach to get additional and

valuable insights regarding the points defects. Particularly, the standard method

used to compute defect formation energies makes an assumption: the interaction

range of a single vacancy does not reach distances larger than about 7 - 8 Å.

Using the linear version of BigDFT we are able to reach system sizes that are

larger than those used in the literature and do thus not need to make the latter

assumption. This introduces a new perspective on the calculations of point defects

using DFT. We find that in the Γ-only approach the Tungsten VFE does not

converge for 2000 atoms, which clearly indicates that larger cells are needed. In

the k-points approach, we find that a unit cell consisting only on 128 atoms with

a single vacancy and a k-points grid may introduce a small interaction between

neighboring vacancies which would lead to a not so accurate value of the VFE.

The latter needs to be further studied with more simulation data.
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The thesis is structured as follows: in chapter 2 a review of Electronic Structure

Calculations will be given, emphasizing the theoretical background of DFT and

the extra assumption and development of the linear scaling approach. In chapter 3

the specific implementation of DFT into the BigDFT code will be explained, along

with some technicalities. In chapter 4 we present the simulations performed for

the validation of the linear scaling version of BigDFT for large metallic systems,

along with the analysis of the results in terms of accuracy and computational cost.

In chapter 5 we study the vacancy point defect in a Tungsten lattice. In particular,

we focus on its key quantity, the formation energy. Finally, in chapter 6, we present

the conclusions of this work.

6



2 | Electronic Structure Calcula-

tions

Since the first qualitative calculations of electronic structures in the 1930’s (for

example, by Fock [7]), Electronic Structure Calculations (ESC) have been con-

stantly improving in terms of complexity, accuracy and speed. The main goal

of ESC is to obtain the exact electronic configuration (the electron wave func-

tions) of any system of atoms and/or molecules by means of quantum mechanics.

Once this is achieved, any other magnitude related to the system can be derived

”easily”, such as its energy, band structure or thermal conductivity among many

others. Although during the first years ESCs were mainly theoretical, nowadays

its applications are plentiful, ranging from structural biology to fusion research.

There are plenty of different methods and approximations in order to perform

ESC. In this thesis we will work within the Density Functional Theory (DFT)

framework. DFT is becoming nowadays more and more popular mainly because

of its balance between accuracy, generality and scalability with respect to the

system size. Its use is focused on systems ranging from typically tens to hundreds

of atoms. It is an ab initio method, meaning that it uses fundamental principles

of quantum theory in order to perform the calculations. While providing very

accurate results, the complexity and cost of the calculations are generally much

higher than those for non-ab initio methods.

In this chapter we start, in section 2.1, by giving a short review of the basics

and more relevant approximations of DFT. Secondly, in section 2.2, we present

the theoretical background of the aforementioned linear scaling approach for DFT,

developed in the recent years and needed to reach system sizes that a few years

ago were unfeasible. Next, in section 2.3, we discuss about the differences and

characteristics between real and reciprocal space simulations. Finally, in section

7
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2.3.1, the extra challenges that metallic systems present will be covered and will

serve as starting points for chapters 3 and 4. For the discussion in section 2.1,

reference [1] has been very useful and extensively consulted, while for the discussion

of the linear scaling in section 2.2 reference [8] has been also widely used.

2.1 Basics on Density Functional Theory

2.1.1 The many-body problem and the Born-Oppenheimer

approximation

The electronic structure problem is a many-body system consisting of electrons

and nuclei which needs to be solved by quantum mechanics. Considering that no

external potential is present and that relativistic, magnetic and electrodynamics

effects are not considered, the Hamiltonian of the system is written as:

Ĥ = − h̄2

2me

∑
j

∇2
j −

∑
j,J

ZJe
2

|rj −RJ |
+

1

2

∑
j 6=k

e2

|rj − rk|

−
∑
J

h̄2

2MJ

∇2
J +

1

2

∑
J 6=K

ZJZKe
2

|RJ −RK |
,

(2.1)

where lower case subscripts refer to electrons and upper case subscripts to nuclei,

ZI is the charge of nuclei I and me and e are the electron’s mass and charge,

respectively. The first and fourth terms account for the kinetic energy of the elec-

trons and nuclei, respectively, while the rest of terms account for electric repulsion

or attraction among electrons and nuclei themselves or between them.

By solving the eigenstates and eigenvalues problem

Ĥ |Ψ〉 = E |Ψ〉 , (2.2)

one may obtain the exact solutions of the problem, consisting in a combined

electron-nuclei wave function Ψ({ri}, {RI}). Equation (2.2) is the so-called time-

independent Schrödinger equation.

Unfortunately, this problem can be solved analytically only for the simplest case
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(hydrogen-like systems) and numerically for slightly more complex ones. There-

fore, the search and derivation of useful and valid approximation is the first step

in ESC.

The first and standard approximation is the well known Born-Oppenheimer or

adiabatic approximation. Shortly, it allows to treat the position of the nuclei as

fixed parameters and therefore solve the time-independent Schrödinger equation

only for the electrons, reducing significantly the number of variables and operators.

It can be easily justified by expanding the general electron-nuclei wave function

in an orthonormal basis (see [1] or [8]) and using the fact that the contribution

of the term with MJ (with much higher value than any other constant) in the

Hamiltonian (2.1) is negligible. Taking into account this approximation and using

the Hartree atomic units h̄ = me = e = 4π/ε0 = 1, the Hamiltonian (2.1) can be

rewritten as:

Ĥ = T̂ + V̂ext + V̂int + EJJ , (2.3)

with

T̂ = −1

2

∑
j

∇2
j ,

V̂ext =
∑
j,J

ZJ
|rj − rJ |

,

V̂int =
1

2

∑
j 6=k

1

|rj − rk|

(2.4)

and EJJ contains any term contributing to the total energy of the system other

than electronic interaction, such as the interaction between nuclei.

2.1.2 The Hohenberg-Kohn Theorems

The latter expressions are used not only in DFT, but also in other ESC methods.

From now on, particular DFT approximations are presented, starting with the

Hohenberg-Kohn theorems [9], which form the basis of DFT. These widely-known

theorems were proved in 1964 by Hohenberg and Kohn and their usefulness lies on

their simplicity and ingeniousness. Basically, it changes completely the perspective

of the many-body problem by giving an analogous way to solve it using the particle

9
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density. Thus, the H-K theorems form the cornerstone of all the DFT theory.

Before the statement and proof of both theorems we introduce formally the particle

density n(r), which plays a key role in DFT. It is defined as the expectation value

of the density operator n̂(r) =
∑

i=1,...,N δ(r− ri), where N is the total number of

particles in the system. n(r) is expressed (both in Dirac’s and integral notation)

as

n(r) =
〈Ψ|n̂(r)|Ψ〉
〈Ψ|Ψ〉

= N

∫
d3r2 . . . d

3rN |Ψ(r, r2, . . . , rN)|2∫
d3r1 . . . d3rN |Ψ(r1, r2 . . . , rN)|2

. (2.5)

We notice that spin has been omitted and the integral notation is obtained using

the fact that wave functions are symmetric in all the electron coordinates. Also,

the particle density of a particular state nj(r) is obtained by substituting Ψ by its

particular wave function Ψj. In a similar way, the total energy of the system is

defined as the expectation value of the Hamiltonian,

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≡ 〈Ĥ〉 = 〈T̂ 〉+ 〈V̂int〉+

∫
d3rVext(r)n(r) + EJJ , (2.6)

where the expectation value of the external potential has been explicitly written.

With the latter definitions in mind, the Hohenberg-Kohn theorems are presented,

which are quoted from reference [1]:

Theorem 2.1. For any system of interacting particles in an external potential

Vext(r), the potential Vext(r) is determined uniquely, except for a constant, by the

ground state particle density n0(r).

Proof. This proof works by reductio ad absurdum. Let us assume that there exist

two different external potentials, namely V
(1)

ext (r) and V
(2)

ext (r), which differ by more

than a constant and which lead to the same ground state density n(r). First, using

the assumption and equation (2.3), one notices that the two external potentials

lead to two different Hamiltonians, Ĥ(1) and Ĥ(2), which at the same time have

different ground state wave functions, Ψ(1) and Ψ(2) (we omit the subscript 0 for

convenience). Since Ψ(2) is not the ground state of Ĥ(1) (also supposing the ground

states are non-degenerate and states are normalized), it follows that

E(1) =
〈
Ψ(1)

∣∣Ĥ(1)
∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣Ĥ(1)
∣∣Ψ(2)

〉
. (2.7)
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Rewriting the last term in the later inequality and using (2.6):〈
Ψ(2)

∣∣Ĥ(1)
∣∣Ψ(2)

〉
=
〈
Ψ(2)

∣∣Ĥ(2)
∣∣Ψ(2)

〉
+
〈
Ψ(2)

∣∣Ĥ(1) − Ĥ(2)
∣∣Ψ(2)

〉
= E(2) +

∫
d3r
[
V

(1)
ext (r)− V (2)

ext (r)
]
n0(r).

(2.8)

This leads to

E(1) < E(2) +

∫
d3r
[
V

(1)
ext (r)− V (2)

ext (r)
]
n0(r). (2.9)

We notice that exactly the same procedure exchanging superscript 1 by 2 leads to

the same expression taking into account the substitution,

E(2) < E(1) +

∫
d3r
[
V

(2)
ext (r)− V (1)

ext (r)
]
n0(r). (2.10)

Combining (2.9) and (2.10) leads to the contradiction E(1) + E(2) < E(1) + E(2),

proving that indeed the density uniquely determines the external potential.

Corollary 2.1. All properties of the system described in theorem 2.1 are completely

determined given only the ground state density n0(r).

Proof. By theorem 2.1, the external potential is already determined. From equa-

tion (2.3) it follows that therefore the full Hamiltonian is also completely deter-

mined. Finally, the system is completely characterized by the many-body wave

function, which is obtained by means of the Hamiltonian.

These results are theoretically remarkable, since it gives a completely different

point of view of the problem. However, it is of little use in terms of applicability,

since the many-body wave function would still need to be found. The second

theorem tackles this problem.

Theorem 2.2. A universal functional for the energy E[n] in terms of the density

n(r) can be defined, valid for any external potential. Given a particular external

potential, the exact ground state energy of the system is the global minimum value

of this functional and the density n(r) that minimizes the functional is the exact

ground state density n0(r).

Proof. This proof is restricted to densities that are V-representable, although the

proof can be extended to a larger set of densities. For a detailed discussion see [1].

Since all properties of the system are uniquely determined if n(r) is specified, then

11
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each of them can be expressed as a functional of n(r), in particular the total energy

functional:

EHK [n] = T [n] + Eint[n] +

∫
d3r Vext(r)n(r) + EJJ

≡ FHK [n] +

∫
d3r Vext(r)n(r) + EJJ .

(2.11)

Let us consider a system with a ground state density n(1)(r), corresponding to

an external potential V
(1)

ext (r). Then, the functional (2.11) evaluated at n(1)(r)

is equal to the expectation value of the Hamiltonian in the ground state wave

function, Ψ(1),

E(1) = EHK [n(1)] =
〈
Ψ(1)

∣∣Ĥ(1)
∣∣Ψ(1)

〉
. (2.12)

Let us now consider a different density n(2)(r), which corresponds to a different

wave function Ψ(2). By evaluating its energy as in (2.6) we obtain

E(1) =
〈
Ψ(1)

∣∣Ĥ(1)
∣∣Ψ(1)

〉
<
〈
Ψ(2)

∣∣Ĥ(1)
∣∣Ψ(2)

〉
= E(2) (2.13)

Since n(2) has been arbitrarily chosen (only imposing that is different than n(1)),

then it follows that the functional takes its minimum when evaluated at n0.

Corollary 2.2. The functional E[n] alone is sufficient to determine the exact

ground state energy and density.

Proof. Assume that E[n] is known. Then by minimizing the total energy of the

system (2.11) with respect to variations in the density function n(r) one would

find the exact ground state density of the system.

Remark 1. One may notice that this constructions give you information about the

ground state. Further steps should be performed to find excited states’ properties.

Summarizing, the two H-K theorems present a new approach for solving the

electronic structure problem by means of the particle density n(r) and offer a

method to solve the problem without the need of solving the many-body equation.

However, one may see that the problem lies now on finding the universal functional

FHK [n] and, unfortunately, its exact form is not known.

12
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2.1.3 The Kohn-Sham formalism and the exchange-correla-

tion functional

This issue was partially solved by Kohn and Sham one year after the theorems

were stated, by introducing the so-called Kohn-Sham formalism [10]. Nowadays

this approach is the more extended method within the DFT framework, because of

its simplicity and great progress. The main idea of the formalism is to convert the

problem of interacting particles to a system of non-interacting particles with the

same ground state density. This ansatz also includes the effect of combining all

the difficult many-body terms in an exchange-correlation functional of the density

Exc[n]. As a consequence the many-body electron wave function would be split

into N single electron independent wave functions. The system of non-interacting

particles is known as the Kohn-Sham auxiliary system and it rests upon two as-

sumptions [1]:

1. The exact ground state density can be represented by the ground state den-

sity of an auxiliary system of non-interacting particles. This is called non-

interacting-V-representability.

2. The auxiliary Hamiltonian is chosen to have the usual kinetic operator and

an effective local potential Veff(r) acting on an electron at point r.

These assumptions lead to the following Hamiltonian for the auxiliary system:

Ĥaux = −1

2
∇2 + V (r). (2.14)

Furthermore, the fact that now the wave functions are independent, allows us to

rewrite some quantities in terms of the orbital eigenfunctions ψi(r),

n(r) =
N∑
i=1

|ψi(r)|2,

T =
1

2

N∑
i=1

∫
d3r|∇ψi(r)|2.

(2.15)

We also define the classical Coulomb interaction energy of the electron density

13



Chapter 2. Electronic Structure Calculations Marc Eixarch

interacting with itself (the so-called Hartree energy) as

EHartree[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
. (2.16)

Finally, the Kohn-Sham expression for the energy is

EKS = T [n] +

∫
drVext(r)n(r) + EHartree[n] + EJJ + Exc[n]. (2.17)

Now the kinetic operator is particle-independent and the internal interactions

among the particles are rewritten in terms of the particle density or included in

the exchange-correlation functional, which allows to solve the system numerically.

However this comes with a price: the quality of the simulation depends uniquely

on how precise the exchange-correlation functional Exc[n] is. This functional is

meant to include all many-body effects of exchange and correlation, and it actually

can be explicitly written in terms of the Hohenberg-Kohn approach as

Exc[n] = FHK[n]− (T [n] + EHartree[n]), (2.18)

or in a more illustrative manner as

Exc[n] = 〈T̂ 〉 − T [n] + 〈V̂int〉 − EHartree[n]. (2.19)

From the last equality one notice that the exchange and correlation functional

is the difference of the kinetic and internal interaction energies between the true

interacting many-body system and the fictitious independent-particle one. This

is the reason why there is no exact form of the total energy functional and there-

fore, an approximation of Exc[n] need to be done to solve the problem. Before

addressing this issue, we present the final Kohn-Sham equations that need to be

solved to obtain the ground state density and energy, which are a direct result of

minimizing the functional via variations under orthonormalization constraint and

using Lagrange multiplier. The K-S Schrödinger-like equation is

(HKS − εj)ψj(r) = 0, (2.20)

where εi are the eigenvalues and HKS is the effective Hamiltonian

HKS(r) = −1

2
∇2 + VKS(r), (2.21)
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with

VKS(r) = Vext(r) +
δEHartree

δn(r)
+
δExc

δn(r)

= Vext(r) + VHartree(r) + Vxc(r).

(2.22)

We briefly comment here how the exchange-correlation functional is obtained.

Different methods have been proposed to obtain an approximation of Exc[n].

Nowadays there are two main methods, the Local Density approximation (LDA)

and the Generalized-Gradient approximation (GGA). Both of them, at the same

time, have different particular implementations and details. The basic idea is to

use the exchange and correlation function of an homogeneous electron gas with the

same charge density as the real target system. Furthermore, the LDA only takes

into account local values (that is, only evaluating n(r)), and gives surprisingly

good results. The GGA takes into account, apart from the local term, derivatives

terms (that is, gradients of n(r)) and for more complex systems give better values

than the LDA at the expense of computational time.

2.1.4 Numerical and computational techniques

To finish section 2.1 we point out two interesting and important concepts in the

framework of DFT but that arise from a numerical (or computational) point of

view:

• The self-consistent cycle is a numerical approach for solving the K-S equa-

tions iteratively. Basically, one starts with a guess for the particle density

n(r) and solve the KS equations, from which one can obtain again a new

value of n(r). If the initial guess for the density was the correct one, then

it is called self-consistent and the calculation is finished. If the initial guess

and the output density are different, then it is not self-consistent and the

output density is used as initial guess for the next cycle until their difference

is closer than a certain threshold value.

• Fortunately (in terms of computational complexity) it turns out that the

electrons which are close to the core region are chemically inert, meaning that

they are not involved in chemical reactions. This allows to describe them

using what is known as a pseudopotential, which replaces the atomic nucleus
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and core electrons by a constructed potential whose charge is reduced by

the number of core electrons. This is extremely useful, since for calculations

of atoms with high atomic number (which would need lots of orbital wave

functions) the number of active electrons is reduced to a value close to its

valence number.

2.2 Linear scaling approach

The DFT formulation described in the section 2.1 has been one of the main de-

velopments of ESC in the past decades and has allowed researchers to obtain a

huge range of properties of different systems that very likely would have been

impossible to test experimentally. Moreover, its accuracy and reliability is very

good compared with other methods. However, if one wants to go even further and

calculate electronic structures of systems with a relatively high number of atoms

(greater than a few hundred atoms) then DFT becomes unfeasible even running on

supercomputers. The reason is that, for large systems, the Kohn-Sham approach

scales to the power of three with the number of atoms in the system (∼ N3). This

effect may not be noticed for small system sizes, since there are other tasks with

lower scaling but larger prefactor. In fact, the task that scales with N3 consists

in calculating scalar products among all orbitals of the system, needed to impose

orthogonality on the system, and its contribution to the total computational time

does not become important until a few hundred of atoms are reached. However,

when this point is reached, only by increasing the system size a bit, the calculation

become extremely expensive or even unfeasible.

In the path to overcome this barrier, in the last years some research groups have

managed to achieve a linear scaling with respect to the system size by developing

a new approach and computational method which is justified by the so-called

nearsightedness (term first introduced by W. Kohn in [3]). The main idea of the

approach consists in only considering interactions between electrons that are closer

to each other than a threshold radius. In this section we present formally this extra

approximation and its justification, along with the new formalism.

The starting point of linear scaling DFT is the Kohn-Sham approach. However,

it is very useful and illustrative to change the formalism and work with density

matrices rather than with the usual orbital wave functions. To this aim, we define
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the density matrix as

ρ(r, r′) =
∑
i

f(εi)ψi(r)ψi(r
′), (2.23)

where f(εi) is the Fermi function given by

f(εi) =
1

1 + e(εi−µ)/(kBT )
(2.24)

and determines the occupation of the i-th orbital. In (2.24), µ is the chemical

potential, kB the Boltzmann constant and T the electronic temperature, often

assumed to be zero. By modifying equations (2.15) and (2.16), one can rewrite

the central quantities of DFT in terms of the density matrix as

T = −1

2

∫
∇2ρ(r, r′) |r=r′ dr′,

Epot =

∫
VKS(r′)ρ(r′, r′)dr′,

Etot =

∫
H(r′)ρ(r, r′) |r=r′ dr′,

n(r) = ρ(r, r).

(2.25)

The latter operators can also be discretized using a finite orthonormal basis set

φα(r), leading to

Hαβ =

∫
φα(r)H(r)φβ(r)dr,

Kαβ =

∫∫
φα(r)ρ(r, r′)φβ(r′)drdr′.

(2.26)

With this analogous formalism, one can obtain both the energy and the total

number of particles in the system by computing matrix traces,

E = tr(HK),

N = tr(K).
(2.27)

Up to this point, a new formalism has been introduced, but no extra approximation

has been applied. Thus, the computational cost of the calculations should be the

same. In order to reduce the computational cost of DFT it is first needed to discuss

what locality exactly means. In classical mechanics, properties are local, meaning

that two bodies are localized and can only interact either in contact or if they
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interact with a self-generated potential. However, quantum mechanics introduces

the non-locality, that is, particles are an extended wave function in space and could

interact even far away from each other. A clear example to illustrate this idea is the

antisymmetry of a many-electron wave function, applied to any pair of electrons in

the system regardless the distance between them. However, the question that may

arise is: to what extent does this non-local property really affect a quantity of a

single electron? In other words, is a quantity of a given particle pi modified by the

effect of other particles pj far away from pi (so that the modification is noticeable)?

If the answer were no, i.e. the effect of distant particles were negligible, it would

be justified not to compute every binary interaction among the electrons and reach

the aforementioned linear scaling.

It turns out that already by 1964 it had been proven [11] that the density

matrix elements decay exponentially with respect to the distance |r− r′| between

particles for insulators and metals at finite temperature, and algebraically for

metals at zero temperature. The reason for the decay properties of the density

matrix lies in the interference among the various eigenfunctions, thereby canceling

contributions where r and r′ are far away [8]. In figure 2.1 is depicted this effect

in a particular system that we have studied, a perfect body centered cubic lattice

of Tungsten with 729 cells and 1458 atoms. It is clear that regions with low values

for the density matrix (in light blue) are larger than regions with higher values

(in dark blue). Thus, this matrix representation demonstrates its sparsity and the

locality of the system. In chapter 4 this will be extensively commented for different

system sizes, proving that indeed there is a huge localization property to exploit.

Due to the rapid decay of the matrix elements ρ(r, r′) it is justified to cut the

density matrix at a given radius, i.e. imposing ρ(r, r′) = 0 for |r− r′| > λ, where

λ is some system-dependent constant that characterizes the decay behavior. This

procedure transforms the density matrix into a sparse matrix with mostly zero

elements, and allows to use new numerical algorithms that scale only linearly with

the system size.

There are different methods to exploit the sparsity of the density matrix and

achieve the linear scaling. In this thesis we will only discuss one particular method

and implementation in the BigDFT code. This will be covered in chapter 3.
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Figure 2.1: Density matrix for a system of 1458 atoms of Tungsten structured in
a perfect bcc lattice. Matrix elements in light blue correspond to low values, while
elements in dark blue correspond to higher values. The localization of regions in
dark blue proves the sparsity of the matrix.

2.3 Real vs reciprocal space simulations

There is still, in the general DFT framework, a widely used theoretical (and com-

putational) technique that in some situations can make the computational time of

calculations much smaller, while preserving its quality and precision. This tech-

nique is known as the k-points method and it is based on a transformation from

the real space to the reciprocal space, by means of the Fourier Transform. The

only condition that the target system must fulfill consist of periodicity in the three

spatial dimensions. The method gives such a good performance that it is even used

for some special infinite non-periodic systems for which the periodicity is broken

only in a specific region of the infinite system. This is done by imposing periodicity

in some artificial boundaries located as far as possible from the defect. This results

in locating its image far enough so that there is no interactions between them.

The theoretical background of the method was mainly motivated by the study

of pure periodic systems, such as crystal structures. This category of solid materi-
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als are characterized by being arranged in a highly ordered microscopic structure,

forming a crystal lattice extended on three spatial directions – the most iconic ex-

ample being probably the Diamond crystal structure– and therefore, the positions

of the nuclei are repeated periodically in space. One can completely characterize

the whole system just by specifying the types and positions of the nuclei in one

repeat unit (known as primitive unit cell) and the rules that describe the repeti-

tion (known as translations). The study of such crystal structures is broad, and

here we will only comment on the necessary ones to understand how the k-point

method works.

Probably, the most basic concept in crystallography is the lattice of translations,

which defines the set of all possible translations in space. In three dimensions it

is defined as

T(n) ≡ T(n1, n2, n3) = n1a1 + n2a2 + n3a3, (2.28)

where ai are the primitive translation vectors which also define the unit cell di-

mension, and ni are integers. However, this construction does not define a unique

unit cell, for which there are infinite possibilities. The Wigner-Seitz cell is a special

one, consisting in the locus of points in space that are closer to that lattice point

than to any of the other lattice points.

Although the definitions above may be helpful in order to construct the system,

in terms of computational cost it has not given any insight for DFT. The k-points

method is a theoretical and computational technique that exploits the periodicity

of the system so that one can obtain all the information of the system only by

doing the calculation in the Wigner-Seitz of the reciprocal space, which is defined

as the first Brillouin zone (BZ). The construction of the BZ is as straightforward

as the Wigner-Seitz cell once the lattice of translations of the reciprocal space is

found. Similarly to the real lattice of translations, the reciprocal one is defined as

G(m1,m2,m3) = m1b1 +m2b2 +m3b3, (2.29)

where mi are integers and bi are the reciprocal primitive vectors. The last vectors

can be found using the relation

bi · aj = 2πδij. (2.30)

Arising from the concept of Bloch waves, i.e. wave functions of the form ψi,k(r) =

eik·rui,k(r), where eik·r is a plain wave and ui,k(r) a periodic function, we also define
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the set of vectors K in the reciprocal space (k -vectors) which in our particular case

can be expressed as

k =
2π

Rmax

(
n1

|b1|
b1 +

n2

|b2|
b2 +

n3

|b3|
b3

)
, (2.31)

where Rmax is the maximum distance between two lattice points in the system. It

is important to notice that, in (2.31), k refers to a set of vectors, since we obtain

a different one for each possible combination of {n1, n2, n3}. Moreover, it is worth

to notice that there is exactly the same amount of vectors k as cells in the system.

By applying the Bloch Theorem and carefully analyzing and exploiting the

periodicity in space for the operators, one may find that these k-points in the

BZ specify all possible eigenstates of the system and the Hamiltonian becomes

k-dependent. Considering an arbitrary Hamiltonian Ĥ for the system, one can

solve the equations

Ĥ(k)ui,k(r) = εi,kui,k(r) (2.32)

for each k and obtain the eigenstates and energies, using ψi,k(r) = eik·rui,k(r).

For the purpose of this thesis, it is important to note that:

(i) The k-points method assumes periodicity in the system and exploits it by

redirecting the problem into the reciprocal space.

(ii) The calculations are done only in the BZ. Since the number of k-points is

equal to the number of unit cells in the real space, one may want to increase

as much as possible the number of k points in the simulation to increase its

accuracy.

(iii) The computational time required to solve the problem is highly reduced,

compared to the time one would need to solve the same problem in real

space.

(iv) There are numerical methods to find symmetries within the k points and

accelerate even more the calculations.

As commented above, probably all DFT codes have the k-points method imple-

mented. It is used for periodic systems and for some specific non-periodic systems.

However, there are several questions that may arise regarding the method; what

can one do when the system is really big and non-periodic? How can one know
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if the use of the reciprocal space in periodic systems is introducing errors to the

calculations due to the choice of a small unit cell? For most of those big systems,

there were no other feasible ways to do ESC. Thus it is not possible to compare the

results of the ”artificial periodic” system with k-points with the real space ones.

This is caused by the high computational cost of latter one. Fortunately, due to

the rapidly development of the linear scaling algorithms and the development of

new highly parallelized DFT codes, nowadays it is possible reach system sizes that

were only possible to reach by means of the reciprocal space, thus providing a new

way to perform calculations and compare results. In chapter 4 we will test the

linear scaling algorithm of the BigDFT code to perform new real space simulations

that are comparable to the corresponding sizes of reciprocal space simulations. It

is important to remark that while the k-points sampling is implemented in the

traditional cubic version of the BigDFT code, up to now it is not yet implemented

in the linear version.

2.3.1 Interests and challenges regarding metal calculations

As commented in chapter 1, this work is motivated by the application of DFT tech-

niques in fusion materials research. The target category of materials to be tested

consists mainly of pure metals and metallic alloys. This choice is justified by the

fact that materials belonging to those categories generally exhibit good behavior

under radiation pressure. However, metallic systems present extra difficulties in

DFT calculations compared to other types of solid materials. To understand it

we must first introduce what is known as the HOMO-LUMO gap. Among all the

allowed energy levels where electrons can be (orbitals), there are two categories,

occupied and unoccupied levels. The occupied level with highest energy is know

as the highest occupied molecular orbital (HUMO) and the unoccupied level with

lowest energy as lowest unoccupied molecular orbital (LUMO). The energy differ-

ence between these particular levels is known as the HOMO-LUMO gap. For a non

excited molecule or atom, the HOMO-LUMO gap also correspond to the energy

that one would need to give to the system so that an electron in the HOMO level

could jump to the LUMO one.

It turns out that in ESC the value of this gap also gives information about

the complexity of the calculation. The reason is that the surface that separates

the reciprocal space into the occupied and unoccupied levels, the so-called Fermi

surface, may introduce jump discontinuities to some quantities that need to be
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integrated numerically in DFT. If the HOMO-LUMO gap is wide enough, it may

not introduce much errors, but when the HOMO-LUMO gap is very low or zero,

as is the case in metals and alloys, then the Fermi surface is abrupt and difficult

to localize and, therefore, the numerical integration may lead to huge numerical

errors and make it hard to reach the convergence in the self-consistent cycle [2].

There are different approaches to deal with this problem. For example, in-

creasing the number of k-points so that the integral becomes more accurate, in

k-space simulations, or using specific numerical integrating methods in order to

obtain more accurate results in the integral. Another technique consists of increas-

ing the temperature of the system, reflected in the Fermi distribution in equation

(2.24), which smoothes the functions at the Fermi level. However, this last and

effective approach has to be applied very carefully when performing DFT calcu-

lations since the price to pay is that one is not anymore using the real functional

at 0 temperature, but instead another one with a higher electronic temperature,

thus introducing an error that must be considered. For these reasons, up to now

the linear scaling DFT has been rather limited for metallic systems compared to

non-metallic ones, such as organic molecules, and there are still lots of test to

perform to check its validity and limitations.
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3 | Implementation of DFT in the

BigDFT code

In the last chapter the theoretical background of DFT and particular useful meth-

ods related to this work have been presented. However, as commented before, each

implementation of DFT in a code has very specific characteristics and each of them

may be optimized for different types of calculations. The basis set, the numerical

solvers, the exchange-correlation potential and the type of pseudopotentials are

usual code-dependent characteristics of DFT. In this section we review the spe-

cific implementation of DFT in the BigDFT code (see [4, 8, 12–14] for reference

papers, web page http://bigdft.org/), which will be used in the next chapter

to perform the calculations.

3.1 Wavelets

The basis set of a DFT code is used to express the KS orbitals and, therefore, it

takes a primary role in the development of the code. Nowadays, the most used

basis sets are plain waves, Gaussian-type orbitals and numerical-like orbitals. Plain

waves basis sets are characterized by being non-localized, thus they are optimal

for periodic, homogeneous systems. Also, the accuracy increases systematically

with the number of basis elements. However, they are not adaptive. Oppositely,

Gaussian-type orbitals are optimized for isolated open structures (thanks to their

locality), such as molecules, and a small number of basis elements may be enough

to reach a moderate accuracy. Their weakness is that they are not systematic.

This is the reason why the BigDFT developers decided to work with a new type

of basis set, the Daubechies wavelets, which have the potential to take the best

properties of both the plane waves and the Gaussian-like basis sets. Daubechies
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Figure 3.1: Mother scaling and wavelet functions of the Haar family. Image
from [8].

wavelets form an orthogonal and systematic basis set, and at the same time are

localized and adaptive, along with other useful properties which will be explained

in the following.

Among all families of wavelets, BigDFT uses the so-called least asymmetric

Daubechies of order 16 [15]. In the following we introduce general properties

of wavelets by using a much easier family, the Haar wavelet family, in order to

properly understand and justify the choice of wavelets as a basis set. Then specific

features of the Dauchebies family will be mentioned.

Each wavelet family consists of a mother scaling function φ and a mother

wavelet ψ. The Haar family, which is the simplest possible wavelet, is characterized

by the following scaling and wavelet mother functions, respectively (see also figure

3.1),

φ(x) =

{
1 0 ≤ x < 1,

0 otherwise,

ψ(x) =


1 0 ≤ x ≤ 1/2,

−1 1/2 ≤ x < 1,

0 otherwise.

(3.1)

To generate an orthonormal basis set out of these mother functions, one can use

scaling and shifting operations:

φki (x) ∝ φ(2kx− i),
ψki (x) ∝ ψ(2kx− i),

(3.2)

where k describes the resolution of the basis – the smaller k is, the thinner func-
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Figure 3.2: Exact representation of the piecewise function by means of only
scaling functions. Image from [8].

tions become – and the index i represent the localization in space. Using these

scaled and shifted scaling and wavelet functions, one can approximately represent

a continuous function.

In order to illustrate how they work, we use the Haar wavelet family to represent

a piecewise function in the interval [0, 1]. In figure 3.2 the target function is

depicted. As a first approach one can write the expansion in terms of the basis set

only by means of the scaling functions (without wavelets) as

f(x) =
15∑
i=0

s4
iφ

4
i (x), (3.3)

where s4
i = f(i/16) (the real value of the function). In this case the representation

in the basis set is exact due to its step-wise nature. Oppositely, if the function

was continuous this would lead to an approximation, and in the limit k →∞ the

representation would be exact.

The main advantage of the wavelet representation lies in its capability of using

different resolution levels to express a function. To this aim, one notices that a

scaling function at resolution level k can be written as a linear combination of

a scaling function and a wavelet at resolution level k − 1. By performing this

transformation, equation (3.3) transforms to

f(x) =
7∑
i=0

s3
iφ

3
i (x) +

7∑
i=0

d3
iψ

3
i (x), (3.4)

where the new coefficient can be obtained from those on equation (3.3) by the
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Figure 3.3: Scaling (left) and wavelet (right) functions contribution, as expressed
in equation (3.4). The scaling part is ”smooth” while the wavelet represent rapid
changes. Image from [8].

following relations

sk−1
i =

1

2
sk2i +

1

2
sk2i+1,

dk−1
i =

1

2
dk2i −

1

2
dk2i+1.

(3.5)

Finally, repeating the procedure until level 0 one obtains the last form

f(x) = s0
0φ

0
0(x) + d0

0ψ
0
0(x) +

1∑
i=0

d1
iψ

1
i (x) +

3∑
i=0

d2
iψ

2
i (x) +

7∑
i=0

d3
iψ

3
i (x). (3.6)

We notice that:

• The total number of expansion coefficients is the same as in equation (3.3),

i.e. 16.

• The information of the function is split into the wavelets and the scaling func-

tion. By looking at figure 3.3, which depicts the wavelet and scaling part,

one notice that the scaling function represents a smoothed version of f(x),

while the wavelet represent the rapidly varying corrections to the smoothed

function. Note that in this particular case the word smooth may lead to con-

fusion, due to the non-continuous nature of the example function. However,

in the continuous case this makes much more sense.

• These ”rapid variations” in f(x) are more or less localized in some intervals

of the domain of f(x) – the function does not have rapid changes everywhere

– thus, some of the wavelet coefficient may be zero. This allows to compress

data, since we will be actually using less than 16 coefficients.

The conclusion is that a mixed scaling function and wavelet expansion allows

us to represent a function by a compressed basis set.
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Figure 3.4: Mother scaling and wavelet functions for the least asymmetric
Daubechies of order 16. Image from [8].

The wavelet family used by BigDFT, the least asymmetric Daubechies of order

16, is orthogonal and has compact support. In figure 3.4 are depicted the scaling

and wavelet mother functions for this family. Notice that now the functions are

continuous. Apart from the important properties already discussed above, one

of the main advantages of using wavelets is that they allow you to choose the

resolution level and even separate different regions of space so that you can choose

where to increase the resolution and where to decrease it. Such method allows to

optimize the resources and computational time, since the parts of the system with

more important information can be more carefully represented, while the rest of

the system is represented with a simpler resolution. Specifically, BigDFT allows

three levels of resolution: (i) In the fine region, which is the locus of point in space

closer to the nuclei, grid points carry one scaling function and seven wavelets.

(ii) In the coarse region, grid points carry only one scaling function, because they

are further from the nuclei and the associated quantities in this region tend not

to change (so) rapidly. Its resolution is half that of the fine region. (iii) Points

neither in the coarse or fine regions do not carry any scaling nor wavelet functions,

since they do not contribute to any quantity.
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Figure 3.5: Visualization of the fine region (green) and coarse region (yellow) for
cinchonidine which has the chemical formula C19H22N2O. We notice that the fine
region is closer to the nuclei while the coarse region is further. Image from [8].

Notice that the grid spacing is the same in the entire simulation box, thus

the different resolution levels are obtained by associating a number of scaling

and wavelet functions to each grid point depending on the region they belong

to. The construction of the regions is very straightforward; consider two radii

Rfine < Rcoarse, then the region of space defined by the union of all spheres with

radii Rfine centered at each of the nuclei is the fine region. The region in space

defined by the union of all spheres with radii Rcoarse centered at each of the nuclei

minus the fine region is the coarse region. The value of Rfine and Rcoarse are given

by the product of an atom-dependent constant and a user-specified factor. In

figure 3.5 one can see both regions for the case of a small molecule.
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3.2 Specific linear scaling implementation

In section 2.2 the theoretical background upon which the linear scaling approach

is based has been presented. However, there are several ways to exploit the decay

properties of the density matrix elements, which at the same time can be combined.

Below we present some key points of the linear scaling approach of BigDFT.

Optimal basis and support functions

The optimal basis approach is used in BigDFT. This approach works using what

is known as support functions, which will be denoted as φα. These new functions

act as a set of auxiliary basis functions, in a higher level than the real basis set,

the wavelets. Thus, wavelets are used to express the support functions φα and

then orbitals are expressed via support functions. By means of this approach the

dimension of the density matrix is considerably reduced while it still preserves its

quality.

The support functions can be written in terms of the wavelets and scaling

functions as

φα(r) =
∑
j1,j2,j3

sαj1,j2,j3ϕj1,j2,j3(r) +
∑
j1,j2,j3

7∑
ν=1

dαj1,j2,j3;νψ
(ν)
j1,j2,j3

(r), (3.7)

where ϕ are now the scaling functions and ψ, as before, are the wavelets; s and

d are their respective coefficients and the notation ϕj1,j2,j3(r) stands for ϕ(x −
j1)ϕ(y− j2)ϕ(z− j3). It is also important to note that the set of support functions

used in a particular simulation is optimized in-situ during the calculation. This

approach allows one to use a smaller set of support functions and thus optimize

both the computational time and the quality of the calculation.

As already stated in chapter 2.2, there is a given radius further from which

particles do not interact with each other. This radius, the cornerstone of the

linear scaling DFT, will be referred as cutoff radius or rcut. Using the wavelet

notation, one can write the approximation as{
sαj1,j2,j3 = 0

dαj1,j2,j3;ν = 0
if |Rj1,j2,j3 −Rα| > rcut, (3.8)
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which is equivalent to the expression given in section 2.2 using the matrix elements

directly. Independently from whether considering the fine or coarse region, if

condition (3.8) is fulfilled, the value of a grid point turns directly into zero.

Hybrid optimization mode

The hybrid mode is the method used to optimize the support functions. It is build

so that a trace minimization and an energy minimization via the Hamiltonian are

performed using the same target function and in a smooth way. The transition

from the trace to the energy is controlled by a factor included in Hα, which will

be referred as confinement. Hα is the usual Hamiltonian H plus an extra factor

that creates a confining potential. The target function is written as

Ωhy =
∑
α

Kαα 〈φα|Hα|φα〉+
∑
β 6=α

Kαβ 〈φα|H|φβ〉 , (3.9)

where Ωhy is the quantity that needs to be optimized. We note that as the con-

finement of the potential Hα is decreased, Hα → H, thus leading to the expression

of the total energy.

Density kernel

Once the support functions φα are obtained, the density matrix can also be ex-

pressed by means of this new basis as

ρ(r, r′) =
∑
α,β

φα(r)Kαβφβ(r′), (3.10)

where the matrix K is the density kernel. It can be easily checked that K is

actually the density matrix expressed in the basis of the support functions φα.

The physical quantities expressed in terms of the orbitals or density matrix in

chapter 2, can now be rewritten in terms of the support functions and the density
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kernel. In particular, BigDFT uses the expressions

n =
∑
α,β

Kαβ 〈φα|φβ〉 ,

E =
∑
α,β

Kαβ 〈φα|H|φβ〉 .
(3.11)

to compute the density n and the energy E of the system. Using equation (3.10)

and the fact that the density matrix ρ is sparse, one can write a condition analogous

to (3.8), in terms of the density kernel, as

Kαβ = 0 if |Rα −Rβ| > rcut, (3.12)

where Rα is the central position of the support function φα. Finally, BigDFT uses

the Fermi Operator Expansion (FOE) method to calculate the density matrix. This

method directly calculates the density kernel K as a function of the Hamiltonian

H and the particular expansion of the operator in BigDFT uses the Chebyshev

polynomials.

FOE and direct diagonalization

The density kernel can be optimized using different methods. The choice of this

method is very important, since it controls a large factor of the total computational

time of the simulation. Depending on the complexity and system size, one may

choose one or another. The linear version of BigDFT allows to choose between a

small range of methods. Here we comment the most useful ones available today:

• Fermi Operator Expansion (FOE): As briefly commented in the density

kernel explanation, the FOE directly calculates the density kernel in the

basis of the support functions. Among its different flavors BigDFT uses the

Chebyshev FOE. Basically it expresses the density matrix as a function of

the Hamiltonian by a Chebyshev polynomial expansion of order npl. The

more important feature of this method in terms of its applicability is that

it scales linearly with the system size, i.e. if one wants to achieve the pure

linear scaling this method has to be chosen. However, its prefactor is big

and thus for small system sizes other methods might be preferable.

• Direct diagonalization: this is the most straightforward method, since it
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optimizes the density kernel by performing a direct diagonalization of the

Hamiltonian matrix in the basis of the support functions. It is very useful

for small system sizes, since it has a small prefactor. However, when the

system size increases it becomes prohibitive due to its cubic scaling with the

system size.

In figure 3.6 the flowchart of the linear scaling BigDFT method is depicted. We

note that there are two inner loops, one for the support functions, being optimized

by the hybrid mode, and one for the density kernel, being optimized either by FOE

or by direct diagonalization. The outer loop controls the convergence to the final

value.

Boundary Conditions

To finish the list of remarkable items of the linear scaling version of BigDFT,

we focus on the boundary conditions (BC). BigDFT allows very flexible BC. In

particular, one can choose between: (i) an isolated system, characterized by free

BC, (ii) surfaces BC, consisting in a 2D periodic plus 1D isolated, (iii) the usual

periodic 3D BC and (iv) wires BC, consisting in 1D periodic plus 2D isolated.

Actually, these BCs are not only implemented in the linear version but also in the

cubic one.
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Figure 3.6: Flowchart of the linear scaling DFT in BigDFT. The inner loops
control minimization of support functions and the density kernel. The outer loop
controls the convergence to the real solution of the problem.
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4 | Validation of the linear ver-

sion of BigDFT for large metallic

systems

In chapters 2 and 3 the theory upon which the BigDFT code is based has been

presented, as well as its specific implementation. A complete understanding of both

the approximations and techniques used in DFT is essential in order to properly

analyze the results obtained in any simulation. In this chapter we use the BigDFT

code to perform electronic structure calculations for different systems and sizes

with the aim of thoroughly testing the validity of the linear scaling approach of

BigDFT for large metallic systems.

For this purpose, we will perform calculations for exactly the same system and

set of parameters using both the cubic and linear scaling version of the BigDFT

code. This provides a sufficient test of the validity of the linear scaling approach,

since the accuracy and quality of the cubic scaling version have already been

shown in different papers (see, for example, [12]). It is important to remark that

while the k-points sampling is implemented in the traditional cubic version of the

BigDFT code, up to now it is not yet implemented in its linear version, thus

all calculations performed with the linear version will not use a k-point grid. In

some specific cases, results will also be compared with those obtained with other

DFT codes, such as Abinit [16] and SIESTA [17] and with the force field code

(not DFT) LAMMPS [18]. V sim has also been used for visualizing the atomic

structures (http://inac.cea.fr/L_Sim/V_Sim/).

The chosen system to validate the linear scaling version of BigDFT is a perfect

Tungsten body centered cubic (bcc) lattice. This structure is shown in figure 4.1

for a system size of 128 atoms (64 minimal cells) from two different perspectives.
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Figure 4.1: Representation of a bcc lattice with 128 atoms from two perspectives.
Atoms are represented by white spheres centered at the nuclei positions.

The bcc structure is a type of crystal structure, characterized by the minimal cell

shown in figure 4.2. By repeating this cell in space with a translation rule one can

build the whole system. The translation vectors of the bcc structure have all the

same length and are orthogonal to each other.

The choice of the structure and material is not an arbitrary one. Rather the

following reasons have been considered:

• Tungsten is a very promising element for the fusion community, thanks to

good properties such as a high threshold for sputtering, a high melting point

and a high thermal conductivity [19].

• In terms of convergence of the simulation, Tungsten is a challenging element

which requires a large number of basis functions per atom in order to be

properly described. Thus, if the code works well with Tungsten it is probable

that it will also work well with most other metals.

• Its geometry is rather simple, which makes its visualization and the under-

standing of the results much easier.

The chapter is structured as follows. In section 4.1 we study the minimal cell

of our chosen system. This is required to choose the correct set of parameters so

that the simulation becomes as accurate as possible within a reasonable walltime.
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Figure 4.2: Minimal cell of the bcc structure. This minimal cell, along with the
translations, carry all the required information to build the whole system.

In section 4.2 the validity of the linear scaling approach is shown, both in terms

of quality of the computation and scalability with the system size.

4.1 Minimal cell study and parameter optimiza-

tion

Every DFT simulation with large complexity requires a pre-analysis of the system.

This is done to ensure that:

1. The walltime of the calculation is feasible and agrees with the type of simula-

tion one wants to perform. For instance, if one only cares about a qualitative

understanding of the system, the set of parameters should be adjusted so that

the computation does not become extremely expensive. Oppositely, if one

needs also quantitative results, the parameters have to be tested so that the

desired precision is reached and the walltime does not exceed the maximum

allowed time.

2. There is no waste of computing resources. For example, it is not worth to

set a very tiny grid spacing if the same results can be obtained with a larger
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spacing.

3. Physical quantities make sense according to the target system. An example

would be, for instance, a calculation of a system in equilibrium that yields

a huge pressure. This would lead to a non accurate simulation, since the

system would not be stable. In this particular case, the atom spacing would

require further tuning.

In this section we show the results regarding this analysis. In particular we show

the grid optimization, the lattice parameter optimization and the k-points con-

vergence. Since performing the parameter optimization using a big cell would be

extremely expensive and would lead to a long process, we will use in the entire

section the minimal cell of the system (figure 4.2). For this purpose, and as ex-

plained in section 2.3, we will use the k-points method and the cubic version of

BigDFT. This choice is completely justified, since the system is purely periodic.

Summarizing, by following this approach we obtain exactly the same results as by

using a big cell but saving lots of computational time.

4.1.1 Grid optimization

The grid spacing of the simulation cell plays a very important role in the simulation.

A too large value of the parameter could lead to a poor quality of the simulation,

since lots of information would be lost in regions between grid points. Choosing a

too small value could lead to enormous waste of resources or even to a non-feasible

simulation.

In order to find a good guess for the grid spacing we follow the next steps: 1) Fix

the whole set of parameters except from the grid spacing. 2) Run simulations of

the minimal cell with k-points with different grid spacing. 3) Choose a relevant

quantity of the simulation, make a plot and analyze its convergence. 4) If the

values of the quantity have not converged yet, choose smaller values for the grid

spacing and come back to point 2). If the values converge at some point, pick its

corresponding value of the grid spacing.

By performing this methodology, one ensures that the grid spacing is small

enough so that the results are good but at the same time there is no waste of

resources. In our particular case of Tungsten, the total energy of the system has

been the target quantity to check for convergence. In figure 4.3 we show how the
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Figure 4.3: Energy convergence with respect to the input parameter hgrid that
controls the grid spacing. The circle shows the hgrid value chosen for the simula-
tions in the rest of the work. Notice that the three circled values lead to the same
grid spacing, thus the particular choice is arbitrary.

total energy of the system varies with respect to the hgrid parameter, given in

Bohr, which controls the grid spacing. We first notice that for some ranges of the

hgrid parameter the total energy of the system does not change at all. This is

caused by the fact that the hgrid parameter internally modifies the value of the

grid spacing so that it becomes a divisor of the simulation box size. Thus, for

the aforementioned ranges the real grid spacing is equal even though the hgrids

are different. This ensures that the grid is well fitted in the simulation box. We

also see that for large values of hgrid, corresponding to low resolution, the energy

changes are large. However, as we decrease the value of hgrid the energy changes

also decrease, converging to a given value.

Following this test, we have decided to work with an hgrid of 0.38 Bohr. This

value allow us to obtain reliable results while maintaining a feasible computational
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time.

4.1.2 Lattice parameter optimization

The next parameter to optimize is the lattice constant (or lattice parameter).

The lattice constant controls the distance between the atoms. More precisely, it

corresponds to the length of the translation vectors described in (2.28). Even

though its value should be a constant in nature, actually each code use values

that slightly differ. This is caused by the fact that each implementation of DFT

has small variations in the calculation of quantities in the system, related to the

different basis sets, pseudopotentials and others. Although these deviations are

often very small, it is very important to take them into account. The emergence

of pressure in the system lead to an unstable configuration, thus transforming the

target system into another one with a higher ground state energy. To solve this

issue, a careful analysis of the pressure in the system needs to be carried out.

In this work we use two different quantities to optimize the lattice constant.

Similarly to the hgrid optimization, we start by fixing the set of all parameters

except for the lattice constant. As an initial guess we can take the experimental

value of the lattice parameter. Then we perform simulations with this value and

with small variations of it. Once the results are obtained we analyze the following

quantities:

• Pressure P : this is the most straightforward approach. The pressure of the

system is given by the thermodynamic expression

P = −
(
∂E

∂V

)
T,S

, (4.1)

where V the volume, T the temperature, E the energy and S the entropy. If

the code one is using computes the pressure of the system, then pick the value

closest to zero pressure. If no result is close enough, perform more simulation

with improved values of the lattice parameter. Since BigDFT outputs the

pressure of the system at the end of the simulation, we have been able to

do this analysis. In figure 4.4 the obtained results are presented. We notice

that a particular value is just crossing the line P = 0, thus leading to an

equilibrium system. In brown we have also plotted a linear fit, which agrees

with the obtained results in a neighborhood of the equilibrium parameter.
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Figure 4.4: Pressure of the system given by BigDFT as a function of the lattice
parameter. Crosses in red are the obtained results. The brown dashed line is a
linear fit. The dashed grey line corresponds to P = 0.

We have obtained the value `par = 3.2337 Å.

• Energy E: From (4.1) one can deduce that a minimum in the energy cor-

responds to a zero in the pressure. In figure 4.5 we plot the energy of the

system in terms of the lattice parameter. We notice that its minimum indeed

corresponds to the same value of the lattice parameter as the one that results

to zero pressure in figure 4.4. This proves that the results are consistent.

4.1.3 k-points convergence

To finish this section we address the k-points convergence. As already stated in

chapter 1, the goal of this work is to evaluate the validity of the linear approach of

BigDFT without the k-points method. However, in this preparatory state of the

work it is very useful to do a convergence test in terms of the k-points. In section

2.3 we have seen that the number of k-points in the reciprocal space is related to

the number of unit cells in the real space system. Thus, by performing this study

one can extrapolate the ideal size that the system should have in order to obtain

accurate results.
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Figure 4.5: Energy of the system given by BigDFT as a function of the lattice
parameter. Crosses in red are the obtained results. The brown dashed line is
a quadratic fit. The dashed grey line corresponds to the minimum value, with
`par = 3.2337 Å.

The general idea is very similar to those in section 4.1.1 and 4.1.2: using the

values of hgrid and `lat already optimized, fix the set of all parameters except

for the number of k-points. Then, run simulations with an increasing number of

k-points. The obtained values of the energy should converge at some point, thus

giving the ideal system size in order to obtain accurate results. In figures 4.6, 4.7

and 4.8 the energy convergence in terms of the number of irreducible k-points, the

number of atoms and the box length, respectively, is shown. Notice that the yellow

lines correspond to the converged value, the green lines connecting the points are

fictitious and EKS refer to the Kohn-Sham energy. All plots correspond to the same

simulations, since the number of k-points, the number of atoms and the box length

are related among each other. The number of k-points and its corresponding box

width in real space are both given by the BigDFT output. With this information,

the number of atoms in the system is very easily obtained by

natoms = 2 nunit cells = 2

(
Box length

`par

)3

. (4.2)

We notice that for a system smaller than approximatively 30 irreducible k-
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Figure 4.6: Energy of the system given by BigDFT as a function of the number
of irreducible k-points.
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Figure 4.7: Energy of the system given by BigDFT as a function of the number
of atoms.
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Figure 4.8: Energy of the system given by BigDFT as a function of the box
length.

points, 3000 atoms or a box length of 35 Å, the energy values clearly oscillates.

For a larger system the energy converges to a given value.

The obtained result seem quite alarming. In chapter 1 we commented that

usually DFT simulations range from tens to hundreds of atoms, while figure 4.7

suggest to use around three thousand. This is the main reason why the k-points

method is so important in electronic calculations for periodic systems. The recip-

rocal space approach allows us to reach size limits that would be impossible to

perform in real space calculations (from now on, we will refer to real space calcula-

tions as Γ-point or simply Γ calculations). However, there are some situations on

which the use of the k-points method is not so-well justified and the use of bigger

systems would be of great help. This will be discussed in section 5.

To check that these results are not only obtained by BigDFT we have also

performed a similar study with the code Abinit. In figure 4.9 we plot the energy

convergence as a function of the number of irreducible k-points for both codes.

We observe that Abinit’s results seem to oscillate more before reaching the con-

vergence. However, at approximately the same number of k-points both codes

show a similar convergence.
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Figure 4.9: Energy convergence as a function of the box width for BigDFT and
Abinit codes.

4.2 Towards large systems with the linear scaling

approach

Once the set of parameters of the calculations has been optimized, one can proceed

to the relevant simulations to test the validity of the linear scaling in BigDFT. In

this section we perform Γ-point ESC for the system presented in the beginning of

this section with an increasing number of atoms. In particular, the system sizes

read natoms = 2 k× k× k, with k = 4, 5, . . . , 10. k refers to the number of minimal

cells in the system and the factor 2 stands to the fact that there are two atoms

per minimal cell. Thus, we will show results for a Tungsten bcc lattice with 128,

250, 432, 686, 1024, 1458 and 2000 atoms.

The results will be compared with those obtained with the cubic version of

BigDFT. However, the larger simulations can not be compared, since the cubic

version would require an unfeasible computational time. It is also important to

recall the difficulties regarding metal calculations: a vanishing HUMO-LUMO gap

and a slow decay of the density matrix elements. To deal with these problems it

is required to use many support functions, namely 9 per atom, and an electronic
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Figure 4.10: Sparse matrix representation for 250 atoms (left) and 1458 atoms
(right). Dark blue represents higher values of the matrix elements, while lighter
blue represents low values.

temperature different from zero, in our case 1·10−3 Hartree.

In this section we will first, in section 4.2.1, present the results of the linear

scaling simulations, including the energy of the systems and other quantities of

interest. Secondly, in 4.2.2, we present the comparison with the cubic approach.

Finally, in 4.2.3, the performance of both approaches will be analyzed.

4.2.1 Tungsten calculations up to 2000 atoms

In figure 4.10 we show a representation of the locality of the system for two different

sizes. Even though the locality is clear in both systems, it increases as the system

size grows, as expected. This is due to the fact that for big systems there are

more atoms outside the sphere defined by the cutoff radius and thus the number

of interactions per atom is highly reduced. We notice that both matrices present a

local nature, but the effect is clearly more evident in the system with 1458 atoms.

This effect implies that the linear scaling is better exploited in big systems. By

using the linear scaling approach we will reach convergence without using the

k-points sampling.

Using the parameters obtained in section 4.1, we have prepared the aforemen-

tioned structures of a Tungsten bcc lattice using from 128 to 2000 atoms. In

figure 4.11 the total energy per atom of each structure is plotted. The energy is

normalized to the number of atoms in order to compare the results obtained for

different sizes. We observe that the initial oscillations for small systems vanish as
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Figure 4.11: Energy of the Tungsten bcc structures as a function of the system
size, obtained with the linear version of BigDFT code at Γ.

the system size grows and the energy per atom converges to a particular value.

It is important to notice that in order to check for convergence in the values,

differences between consecutive energy values need to be analyzed, rather than

percentage errors between them. This is a consequence of the fact that the en-

ergy as an absolute value is meaningless, since any scalar constant could be added

to the values. The energy difference between the first two sizes is about 0.1 eV,

while for the last pair it decreases to 0.01 eV, a 10% of the first one. Thus, to

reach convergence a large number of atoms is required, as already predicted by

the k-points study. Actually, even with 2000 atoms it is not completely clear that

the convergence has been reached. Even though an energy difference of 0.01 eV is

acceptable to have a qualitative understanding of the system, it is not completely

satisfactory if accurate quantitative values need to be derived from the respective

energy values.

In order to have a wider understanding of the behavior of the results we have

also plotted in figure 4.12 the energy convergence using the two different types

of BigDFT simulations. The results obtained with the linear version of BigDFT

with Γ-point are represented in green. The results obtained with the cubic version

using a minimal cell with 2 atoms and k-points are represented in purple. It is
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Figure 4.12: Energy of the Tungsten bcc structures as a function of the system
size. Data in green obtained with the linear version of the BigDFT code and Γ-
point. Data in purple obtained with the cubic version of BigDFT, a minimall cell
with two atoms and varying the number of k-points.

important to recall that the number of atoms represented in the k-points approach

is determined from the minimal cell and the number of k-points used. We observe

that both versions show a similar behavior, although the k-points approach present

more oscillations and seems to convergence slower. It is worth pointing out that

these differences are due to the fact that for these particular simulations we have

only considered the irreducible number of k-points, thus making the conversion

from reciprocal to real space not completely exact.

We have also checked that the zero pressure predicted by the minimal cell study

is also confirmed by the big systems. The results are plotted in figure 4.13. We

note that there are small oscillations but all of them within an acceptable range

of approximatively ± 1 GPa. The latter can be justified using the results already

presented in figure 4.4: a difference in the lattice parameter of 1% lead to pressure

changes of around 12 GPa. Thus, the maximum pressure difference observed in

figure 4.13, namely 1,2 GPa, is virtually equivalent to a lattice parameter deviation

of 0.1%. Thus, we prove that the system is in equilibrium.
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Figure 4.13: System pressure as a function of the system size obtained with the
linear version at Γ.

4.2.2 Comparison with the cubic approach

In order to prove that the linear scaling approach is giving accurate results and

that the nearsightedness concept agrees with this type of metals, one needs to

compare the results with those obtained with the traditional cubic version within

the same conditions, i.e. both performing Γ-point calculations. For this purpose

we have run simulations with the cubic approach with system sizes ranging from

128 to 686 atoms. Larger systems have been impossible to simulate due to the

large required computational time. In figure 4.14 we present the obtained results.

We observe that the values from the different approaches are virtually identical

except for the system with 128 atoms. The difference for the latter system may be

caused by the fact that a cell containing 128 atoms without k-points is a too small

cell for a metallic periodic infinite system. Thus, this may lead to small variations

in the final energy depending on which version is used.

Therefore, taking into account these reasons and the fact that other system

sizes lead to almost the same results for both approaches, we can conclude that

the linear scaling version of BigDFT works for large metallic systems.

Extra tests have been made to check the validity of the linear scaling approach.
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Figure 4.14: Energy of the system for the linear (purple crosses) and cubic
(green) approaches and Γ-point.

In this case we compare the linear version at Γ with the cubic version using the

unit cell and k-points. We evaluate the energy and pressure of the bcc lattice for

different lattice parameters, as in section 4.1.2. The comparison is done using a

system of 1458 atoms (9×9×9 minimal cells) and Γ-point calculation for the linear

version and a unit cell with 2 atoms and 9× 9× 9 k-points for the cubic version.

As stated in section 2.3 these systems should be equivalent. In figure 4.15 the

results are plotted. We notice that while the pressure give identical values for both

approaches, a small difference is observed for the energy values. This can be easily

understood by the discussion in section 4.1.2: energy values should be evaluated

by energy differences and not by their absolute value. This explains the small

energy deviation from the different approaches, since the difference between the

energy predicted by both approaches is almost constant as a function of the volume

per unit cell. Oppositely, pressure values are virtually identical since they are

computed by means of an energy derivative, thus canceling any constant difference

in the energy.

Summarizing, based on the results presented in figures 4.14 and 4.15 we con-

clude that the linear version of the BigDFT code works for large metallic systems.
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Figure 4.15: Energy per atom and pressure for a Tungsten bcc lattice with 1458
atoms for the linear version at Γ and a unit cell with 9 × 9 × 9 k-points for the
cubic version.

In particular, the accuracy of the method has been checked with both the Γ calcu-

lations and the k-points method. Our results also demonstrate that it is possible

to reach system sizes similar to those achieved with the k-points method without

the use of the reciprocal space.

4.2.3 Computing performance and scalability

The reason to develop a linear scaling DFT is to reduce the scalability of the

simulations and reach larger system sizes. This is why it is of great importance

to analyze the time consumed by the simulations. Furthermore, the use of su-

percomputers and highly parallelizable codes is compulsory. For the simulations

presented earlier in this section we have used a peak number of resources of 7200

cores running in parallel for the same simulation. It is clear that to achieve a good

scaling for this large number of resources a very good implementation of MPI and

OpenMP is necessary.

In section 3.2 we have seen different specific features of the linear scaling in

BigDFT. Among those, the numerical solver is of particular importance regarding
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the calculations computational time. The most relevant solvers are the direct

diagonalization method (diag) and the FOE. We recall that for a purely linear

scaling approach the FOE should be used. However, due to its large prefactor, for

not so large system sizes the diag performs better, even though it presents a cubic

approach. For the linear version calculations presented earlier in this section we

have therefore used the diag method. In figure 4.16 we show the total required

computational time (CPU-time) for systems from 128 to 686 atoms. It is clear that

in the cubic version the cubic scaling becomes already apparent for 432 atoms and

makes simulations with a greater number of atoms almost unfeasible. Oppositely,

the linear scaling approach scales linearly with the system size and reduces by a

factor of 4 the CPU-time of the simulation with 686 atoms. We have also found

that the crossover between both versions, i.e. the system size at which the linear

scaling becomes cheaper than the cubic one, is located at around 150 atoms.

However, due to the choice of the diag solver, this linear behavior in the linear

version stops with a system size of around 1458 atoms, as shown in figure 4.17. We
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Figure 4.16: CPU-time of the simulations for the linear and cubic versions of
BigDFT. The linear version shows a linear CPU-time, represented by the grey line.
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must recall that this behavior has nothing to do with the intrinsic linear behavior

of the physical description of the system, and it is only related to the diag solver.

To prove it we have plotted in figure 4.17 as well the CPU-time of the simulations

subtracting the time spent in the solver. It is clear that the large increase of

CPU-time of the 2000 atoms system is caused by the diag. This issue would

be completely solved by choosing instead the FOE solver. This would lead to

a slightly higher CPU-time for the smaller systems, since the prefactor of FOE

is larger. Nevertheless, for bigger system sizes it would scale linearly and, thus,

reduce by far the CPU-time required for the diag approach.

From the latter reasons it is clear that a repetition of all simulations pre-

sented in this section with the FOE solver would be of great interest. From these

calculations we could check how computationally expensive would be to perform

simulations with even bigger systems and to find the system size at which the

crossover between diag and FOE is found. We are currently running the afore-

mentioned simulations with FOE but, unfortunately, we still do not have enough

results so that they can be presented in the thesis and be properly analyzed. We

expect to present an extended study in the upcoming months.
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Figure 4.17: Left: total CPU-time for different systems sizes for the linear version
of BigDFT with the diag solver. Right: the time spent in the diag solver has
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5 | An application: Tungsten Va-

cancy Formation Energy

As already stated in chapter 1, this thesis is motivated by the study of particu-

lar systems of interest to the fusion community, by means of DFT simulations.

Briefly, nuclear reactions produced inside a plasma of a fusion device create highly

energetic neutrons and charged particle. When these particles collide into the first

wall (or vessel) of the fusion device, important changes in its physical and me-

chanicals properties can arise. These changes are of importance, since as a result

the microstructure of the materials forming the vessel may be changed, affecting

its physical behavior.

There are mainly two types of radiation damage in an irradiated material:

structural distortions in the atomic structure, the so-called radiation defects or

simply defects, and changes in the chemical composition of the material, known

as transmutation reactions. In this thesis we focus on the first type. This type of

radiation damage needs a multiscale analysis in order to be properly understood.

The starting point of defects happens on an atomistic scale, such as a single vacancy

or a single self-interstitial atom (SIA). However, these point defects may grow into

cascades of defects (clusters) that could even interact over time with each other,

requiring other types of models. On the mesoscopic scale the cascades may lead

to a particular type of microstructural evolution [20].

A fundamental description of defects on the atomistic scale requires the use

of truly ab initio models, such as DFT, and also forms the basis upon which

models of higher scales are built. Calculations regarding single defects provide

key point results such as lowest energy configuration of vacancies and SIAs with

high precision. Later on, these values may be used to create higher level models

with an accurate parametrization based on the ab initio calculations, in this way,
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providing much lighter models (in terms of computational time) that can still

accurately represent atomistic-level systems.

In this chapter we first, in section 5.1, give a short review of point defects

and their state-of-the-art. In particular we present the key quantity to analyze,

namely the point defect formation energy. Second, in section 5.2, we present the

simulations we have performed along with a wide discussion of the results. Those

simulations will be done with the linear version of BigDFT at Γ-only. In sections

5.2.1 and 5.2.2 we further analyze the results from two new different perspectives.

In section 5.2.1 a new type of simulation is performed, namely a large multi-

defect cell. This structure is expected to emulate a k-points grid within the Γ-only

approach. In section 5.2.2 we perform a multipole analysis of the defect structures.

5.1 Point defects

Point defects, i.e. defects related to a single atom, are divided into two categories,

vacancies and self-interstitial atoms (SIAs). The vacancy occurs when an atom

is extracted from its usual place in a perfect lattice (see figure 5.1), while the

SIA occurs when an external atom occupies a non-usual place in a perfect lattice

(see also figure 5.1). Both can be related, in the sense that the atom that leaves

a vacancy may be the one creating a SIA, and are generated by a high-energy

particle colliding with it.

Figure 5.1: Vacancy and SIA point defects for a 27 atoms simple cubic structure.
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In this whole section we will analyze the effect of a single vacancy defect in a

bcc Tungsten lattice. The vacancy formation energy (VFE) is defined as

Ev
f = EN−1 −

(
N − 1

N

)
EN , (5.1)

and it is a key quantity for fusion materials research. In equation (5.1), EN refers

to the energy of the structure with N particles (perfect structure) and EN−1 refers

to the energy of the structure with N − 1 atoms (vacancy or defect structure). It

is important to remark that the defect structure is assumed to be relaxed: when

an atom is extracted from a perfect system, forces between atoms may arise, lead-

ing to a non-stable configuration; a relaxed structure means that this has been

taken into account and the affected atoms have been moved so that the system

is in equilibrium. This procedure may be very time consuming when performed

with DFT codes. Therefore for big structures we will use LAMMPS, a non-ab

initio force field code, to relax the structures and then use BigDFT to compute

its total energy. This procedure may lead to some error; however for many struc-

tures, including the vacancy, it is very small, since an accurate parametrization of

the LAMMPS potential has been performed using ab initio simulations. Oppo-

sitely, the consequences of ignoring the relaxation of the structure are of greater

importance, leading to VFE differences that can even surpass 1 eV from its true

value [21].

Before addressing the calculations it is important to check the state of the

art of this topic. VFE values for different elements were already published some

decades ago, before any ab initio method was computationally feasible (see, for

example, [22]). The rapid development of DFT codes at the beginning of this

century offered a new and more accurate method to compute VFE and improved

the old results (see, for example, [6, 21, 23]). In some cases the energy differences

were small but in many other cases the differences were quite big, even leading to

different predictions for minimum energy structures. Thus, it became clear that

truly ab initio calculations were indispensable in order to analyze and quantify

point defects.

At present, VFE values are well known and established. Experimentally, the

Tungsten VFE is found to be between 3.5 and 4.1 eV [24]. Computationally,

Tungsten VFE values from DFT simulations range from approximatively 3.2 to

3.8 eV [6, 25–27]. In both cases the variation represents around a 15%, which is

now calculated by dividing the lower by the higher value in the range since the
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VFE is an energy difference. This encouraged us to further investigate the VFE

and the effects that may cause such high variations.

As already commented in chapter 1, we must point out that in order to have a

more complete study, the SIA formation energy would also need to be analyzed.

Even though we already have some results regarding the latter point defect, these

are not enough so that they can be included in this thesis and to be properly stud-

ied. We expect to have them soon and to include them in upcoming publications.

5.2 Simulations and analysis of results

In order to obtain the value of the VFE, two DFT simulations need to be per-

formed: one for the perfect structure and one for the defect structure. The results

of the first one have already been presented in section 4.2. Thus, we focus here on

the ones for the defect. These days, the standard method to find the total energy

of a structure with a point defect works as a ”hybrid mode” between the k-points

and Γ calculations. To understand why this was proposed, one needs to notice

that the defect structure of a single vacancy is not purely periodic. Extracting

a single atom from the system breaks the periodicity of the lattice, which makes

it impossible to compute the total energy with the unit cell of the system and

the k-points. As already commented in section 4.2, using the Γ-point it is also

unfeasible to reach the convergence of the system. The solution that was proposed

consists of enlarging the unit cell of the system, similar to the Γ case, but still

using k-points. The consequences are the following: the unit cell is as large as

possible, for example with 128 or 250 atoms, and a smaller number of k-points is

used. In [6], for example, a unit cell of 128 Tungsten atoms and a 3×3×3 k-points

grid is used. Within this framework, the vacancy is usually located at the center

of the unit cell for convenience and in order to accurately predict the total energy

it is required that the vacancy does not interact with its periodic image created

by the boundary conditions and exploited by the k-points. It is assumed that this

is true, since the effect of a single atom is not supposed to reach distances further

than the new unit cell. However, since no code has reached still larger system

sizes, it has not been strictly proven.

The goal of this section is to reach system sizes close to the 128 unit cell with

the 3 × 3 × 3 k-points grid, however within the Γ-point approach. Since a cell of

128 atoms is formed of 4×4×4 minimal cells, the aforementioned structure would
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Figure 5.2: Energy per atom of the vacancy structure as a function of the system
size, obtained with the linear version at Γ.

be equivalent to a single cell of 3456 atoms. In this thesis we will reach up to a

10×10×10 unit cell (2000 atoms), which is not as big as desired but will already be

meaningful. In figure 5.2 we present the energy per atom of the defect structures

from 128 to 2000 relaxed by LAMMPS and calculated with the linear version of

BigDFT. We observe that the behavior is very similar to the perfect structures

presented in section 4.2, i.e. large oscillations for small sizes and convergence for

larger ones. The energy difference between the biggest systems, namely 0.01 eV,

represents also a 10% of that given by the smallest ones. This fact seems to suggest

that the vacancy inside the defect structure does not affect the general behavior of

the lattice and only adds a small perturbation, which becomes less apparent for the

biggest sizes since the relative effect of the vacancy decreases due to the increasing

number of atoms. Thus, it would not be necessary to use even larger system sizes.

This can be checked in figure 5.3, where the energies of the perfect and defect

structures are plotted together and their similar behavior becomes clear.

Nevertheless, these results are not conclusive. The proper quantity to analyze

is the VFE and from equation (5.1) we see that it is calculated from energy differ-

ences. Thus, it is possible that even small fluctuations in the energy per atom lead
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Figure 5.3: Energy per atom of the perfect and vacancy structure as a function
of the system size, obtained with the linear version at Γ. The energy difference
vanishes as the system size grows.

to relatively big oscillations in the VFE. In figure 5.4 we plot the VFE obtained

using the results from sections 4.2 and 5.2. Indeed, VFE values for different sizes

seem not to converge even for the 2000 atoms system. Even though most values

are inside the accepted range given by reference values in section 5.1, we observe

that the maximum variation of our VFE values as a function of the system size is

approximatively 23%, while the variation for the biggest systems is 7%.

To have a better comprehension of the results, we plot in figure 5.5 the VFE

obtained with the cubic version, LAMMPS and in grey the experimental accepted

range. From the figure we can deduce:

• The fact that the cubic and linear version of BigDFT lead to the same values

forms another evidence that the linear version works with large metallic

systems.

• By analyzing the LAMMPS result, it is clear that non ab initio codes can

not accurately predict VFE values. This manifest itself in the fact that its

results are almost constant, independently of the system size. Thus, if the

given value is correct it would only be justified by a previous parametrization
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Figure 5.4: VFE of a Tungsten bcc lattice as a function of the system size. Values
obtained with the linear version at Γ.

using DFT calculations for a particular system size and setup.

• The VFE for a Tungsten bcc lattice does not reach convergence even for 2000

atoms using Γ-only calculations.

It is clearly of big interest to expand and analyze the latter point, i.e. why

values have not converged yet. The reason must be, obviously, that the system

size is not big enough to converge. This size problem can manifest itself in two

ways:

(i) In section 4.2 it has been shown that, when using the k-points method, the

convergence is not completely reached until a system size of approximatively

2600-3000 atoms. Thus, it may happen that, although the total energy per

atom seems to have converged, actually a bigger system is needed. This

would apply not only for the defect structure but also for the perfect one.

(ii) The fact that the VFE has not yet converged for 2000 atoms could also

be explained only by the defect structure. The presence of the vacancy in

the cell introduces changes in its internal structure, modifying the position
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Figure 5.5: VFE of a Tungsten bcc lattice as a function of the system size and for
different approaches. The region in grey represents the experimental uncertainty
range.

and charge of near neighbors. Thus, it is possible that the defect structure

would inherently need a bigger cell than that used in standard methods. The

observed convergence in reference calculations would then be explained by

the fact that convergence is reached for a system different from the desired

one, since the vacancy would see and interact with its periodic image.

The quickest way to find the answer is to compute the VFE for even bigger

cells, at least until 3456 atoms. If convergence was reached and gave a value

very similar to the standard method, the use of the latter would be completely

justified. Oppositely, if a different value was obtained or convergence was not even

reached, the possibility that the vacancy inherently needs bigger cells would gain

strength. Unfortunately, due to lack of computational time, it has been impossible

to compute those big systems up to now.

The lack of CPU-time needed to compute bigger structures encouraged us to

come up with different approaches to gain insights regarding the effect introduced

by the vacancy in the final energy value of the simulations. These approaches,

briefly described at the beginning of this chapter, will be presented in the following,
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and whether they require simulations with system sizes similar to those presented

up to now, thus feasible in terms of CPU-time, or a postprocessing of particular

quantities, such as the atomic monopole, of simulations already presented.

5.2.1 Multidefects analysis

The first alternative methodology is based on the idea of simulating the k-points

approach by means of the Γ-only calculation. We recall that the standard method

for computing point defects right now consists of taking a large unit cell (usually

with 128 atoms) and then add a relatively small k-points grid (usually 3× 3× 3).

The corresponding real space cell consists of a big cell of 3456 atoms with 27

defects, each of them located at the center of each repeated unit cell. Since defects

are supposed not to interact with each other, the vacancy formation energy of

a single defect would also be valid within this approach, once the total VFE is

divided by the total number of vacancies.

Figure 5.6: Visualization of a Tungsten bcc lattice with 1016 (1024-8) atoms
corresponding to 8 vacancies. This system is equivalent to a unit cell containing
128 atoms and a single vacancy with 2× 2× 2 k-points.
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To check this fact, we have performed a new analysis, consisting of building the

aforementioned equivalent structure in real space and performing the calculations

at Γ. Due to the already commented limitations with respect to the CPU-time,

we have restricted our simulation to a unit cell of 128 atoms and a single vacancy

with a grid of 2× 2× 2 k-points. In figure 5.6 we show the corresponding Γ-only

structure, i.e. 8 repeated 128 single-defect cells. It is worth recalling the three

types of simulations that we will analyze in the following,

(i) Standard method: cell of 128 atoms and a single vacancy with a grid of

2× 2× 2 k-points.

(ii) Γ-point and multiple defects: big cell containing 1024 atoms and 8 vacancies

created to mimic the standard method and check for agreement or disagree-

ment.

(iii) Γ-point and single defect: big cell containing 1024 atoms and a single va-

cancy. This has been the method used up to now in our calculations.

The results are presented in table 5.1. We notice that the standard method

and the multi-defect approach give similar results, with a variation of approxima-

tively 2%. This is as expected, since the standard method and the multi-defect are

supposed to be equivalent. However, the Γ-only simulation with the single defect

has a larger difference, with a variation of 15%, which is a quite surprising result.

The fact that the 1024 atoms system with a single vacancy differs by approxima-

tively 0.5 eV seems to suggest that there is indeed some interaction between the

vacancies.

vacancy formation energy per defect (eV)

128 atoms with a single vacancy 3.673
and a 2× 2× 2 k-points grid

1024 atoms at Γ-only and 8 vacancies 3.750
1024 atoms at Γ-only and single vacancy 3.194

Table 5.1: Vacancy formation energy per defect for the three different methods.

Nevertheless, we must emphasize that these are preliminary results that must

be further validated. First, we are only dealing with one system size, which could

be not representative. Second, as already commented earlier, a system size of 1024

is not large enough to be in the converged range, thus some fluctuations between
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different methods may arise. Therefore, we went one step further and performed

the same simulations but changing the 128 atoms unit cell by a 250 atoms unit

cell. This transformation leads to the following systems:

(i) Standard method: cell of 250 atoms and a single vacancy with a grid of

2× 2× 2 k-points.

(ii) Γ-point and multiple defects: big cell containing 2000 atoms and 8 vacancies.

(iii) Γ-point and single defect: big cell containing 2000 atoms and a single va-

cancy.

The results are presented in table 5.2. This the time results are not so easy

to interpret. We notice that for the Γ calculations, there exists a difference of

approximatively 0.3 eV between the single defect and multi-defect, corresponding

to a variation of 9%. This still seems to suggest that there exists an interaction

between the vacancies, leading to different values of the VFE. Furthermore, its

difference is smaller than for the 128 atoms system, which agrees with the fact

that vacancies in bigger cells are farther away from each other and therefore their

interaction is smaller. However, the k-points method seems to be closer to the Γ

calculation with a single vacancy than to the multi-defects, even though it should

be equivalent to the latter. This last results, which seem contradictory, force us to

interpret the results with great care. In particular, these somehow contradictory

results could again explained by the fact that the system size is not big enough to

be converged.

vacancy formation energy per defect (eV)

250 atoms with a single vacancy 3.972
and a 2× 2× 2 k-points grid

2000 atoms at Γ-only and 8 vacancies 3.734
2000 atoms at Γ-only and single vacancy 4.090

Table 5.2: Vacancy formation energy per defect for the three different methods.

5.2.2 Charge analysis

The lack of a clear evidence of the interaction between vacancies regarding the

approach just presented made us come up with another one. The second approach
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Figure 5.7: Monopole distribution as a function of the distance to the vacancy.

consists of studying how the presence of the vacancy affects the charge of particles

around it. If the difference of the charge distribution between the perfect and defect

structures is appreciable and reaches distances of the order of the whole cell, our

hypothesis that vacancies impose the use of large cells would be reinforced.

For this purpose the output files of the simulations at Γ with the single vacancy

and the linear version are used. Although no extra DFT simulations need to be

performed, a considerable work of postprocessing the data files need to be carried

out. In particular, we perform an atomic multipole analysis. Even though there

exist different atomic multipole moments related to the charge density in an atom,

here we will focus only on the monopole. Further work could include the study

of higher order moments, such as the dipole or quadrupole. In order to study the

charge distribution around the defect, the monopole of each atom has been plotted

as a function of its distance to the vacancy position, obtaining a distribution of

the monopole moment. In figure 5.7 the distribution has been plotted for defect

and perfect structures of all system sizes. In figure 5.8 the same plot is shown only

for the system with 2000 atoms, in order to have a better visualization.

From both figures it is clear that the charge distribution is influenced by the

presence of the vacancy. However, it is not clear to which extent this may affect

the final values of the calculation. In order to have a rigorous proof of the vacancy

interactions, it would be required that a difference in the charge distribution is

found for the largest distances. Looking again at figures 5.7 and 5.8 we notice

that there is a very tiny difference at the largest distances. Thus, a more detailed

analysis would be needed.
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Figure 5.8: Monopole distribution as a function of the distance to the vacancy
only for the system with 2000 atoms.

For this purpose, a direct visualization of the system could be helpful. Instead

of a distribution of the monopole as a function of the distance to the defect, we

show in figures 5.9 and 5.10 a representation of the system, where each atom is

colored as a function of its monopole charge. Atoms in blue represent positive

charges, atoms in red represent negative charges, while atoms in white represent

a zero charge.

If we focus on the system with 128 atoms (figure 5.9), we observe that the

perfect structure present a regular distribution. It is worth noticing that in the

perfect periodic system the monopole should be neutral for all atoms. Due to the

small system size, this effect is not observed, leading to small fluctuations in the

monopoles charge. In the defect structure, the presence of the vacancy breaks

the regularity and modifies the charge of some atoms in the cell, especially in the

nearest neighbors of the defect. From this, we can infer that

(i) In a 128 atoms cell the vacancy modifies the internal monopole distribu-

tion appreciably. Thus, its presence could be affecting the interaction with

neighboring periodic cells.

(ii) The fact that the perfect structure’s atomic monopoles are not neutral show

that the calculation is not in the converged range, which agrees with the

fluctuations in the energy for systems of this size presented in section 4.2.

If we focus on the system with 2000 atoms (figure 5.10), we observe that the

increase of the system size has allowed the atomic monopole of the perfect structure
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Figure 5.9: Visualization of the cell with 128 atoms with a colored representation
of the charges: blue represents large positive charges, red represents large negative
charges and withe stands for zero charges. Left: defect structure. Right: perfect
structure.

Figure 5.10: Visualization of the cell with 2000 atoms with a colored represen-
tation of the charges: blue represents large positive charges, red represents large
negative charges and withe stands for zero charges. Left: defect structure. Right:
perfect structure.
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to become neutral, as expected. Also the defect structure shows now the expected

result: only the nearest neighbors of the vacancy are affected, creating a structured

monopole pattern. From this we can infer:

(i) In a 2000 atoms cell the defect only modifies the monopole of the vacancy’s

nearest neighbors. Thus, its presence should not interact with neighboring

periodic cells.

(ii) The fact that the perfect structure’s atomic monopoles are neutral, agrees

with the better convergence of the energy for the biggest structures.

Summarizing, the results obtained with the charge analysis seem to suggest

that indeed the presence of the vacancy may affect the accuracy of the simulations

using unit cells of 128 atoms. This can be observed in figures 5.9 and 5.10: the

smallest cell shows an unstructured monopole pattern, modifying the charge not

only of its nearest neighbors but also of farther ones. Oppositely, the largest cell

show a very structured monopole pattern around the vacancy, only affecting its

nearest neighbors.
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6 | Conclusions

The main goals of this work were: (i) providing a sufficient test to validate the

linear scaling version of the BigDFT code in large metallic systems and (ii) use

the latter version of the code to perform electronic structure calculations on fusion

materials with relevance in the field. For both purposes we have chosen Tungsten,

mainly due to its big importance in the fusion materials area and possible future

usage in upcoming nuclear fusion reactors. In particular, the Tungsten structure

consisted in a pristine bcc lattice.

In order to validate the linear scaling version of BigDFT in large metallic

systems, we have first performed a wide analysis of the simulation parameters

set. In particular we have obtained the following optimal parameter values: `lat =

3.2337 Å and hgrid = 0.38 Bohr. To test the performance of the linear scaling

DFT we have focused on the accuracy and the scalability of the code. Regarding

the accuracy, in section 4.2.2, we have first presented the results obtained in the

energy calculations of the bcc Tungsten structure for both the traditional cubic

and linear version at Γ-only, as a function of the system size. The results have

clearly shown that both version agree, providing virtually identical values. As an

exception, the simulation with the smallest system size, namely 128 atoms, has

led to a small difference between both approaches. Nevertheless, this is only due

to a too small system size and not to a wrong physical behavior in any of the

two approaches. The accuracy of the linear scaling version at Γ-only has also

been compared with the cubic version with a Monkhorst-Pack k-points grid. To

perform this comparison, the linear Γ-only system has been built with a fixed

number of unit cells, equivalent to the number of k-points used in the cubic one.

Then, the energy of both systems as a function of the lattice parameter has been

compared, resulting in another proof of the validity of the linear version thanks to

the agreement at the values.
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Concerning the scalability of the code, we have restricted ourselves to the

usage of the diag solver only. The latter solver has a very low prefactor with

the price that it actually scales cubicly with the system size. It is important to

recall that the solver scalability is completely independent to the scalability of the

physical description of the system, which is completely linear in the linear version

of BigDFT. The CPU-time spent in each simulation as a function of the system

size has been presented and discussed in section 4.2.3. We have been able to check

that (i) the linear description of the system agrees with the linear CPU-time of

the simulations for the diag solver until approximatively 1024, where the linear

scalability is lost due to the solver contribution. (ii) If the CPU-time consumed

by the diag solver is subtracted from the total CPU-time we obtain an almost

linear scalability up to 2000 atoms. (iii) The crossover between the cubic and

linear version with the diag solver and for a Tungsten bcc lattice takes place at a

system size of around 150 atoms. We remark that in order to be in a completely

linear scaling regime, the FOE solver must be used. The latter solver presents a

completely linear scaling with the price of a large prefactor.

Once the scalability of the system has been validated, the thesis has focused on

the study of the formation energy of a particular point defect, namely the single

vacancy, in Tungsten. In order to obtain values for the VFE we have first simulated

the defect structures. The relaxation of the structures have been performed using

the force field code LAMMPS, while the ab initio energy calculation has been

obtained with the linear version of BigDFT at Γ-only. The results show that

the VFE values do not reach convergences in our system size range, i.e. from

128 to 2000 atoms. This fact was not surprising, since bigger system sizes are

required to reach convergence. This was already predicted by the k-points study

in section 4.1.1 and also stated in the literature. Due to the cubic scalability of

diag, structures larger that the 2000 atoms one have been unfeasible. Thus two

alternative approaches to evaluate the effect that the vacancy introduces to the

simulations have been performed.

The standard method to compute the VFE uses relatively large unit cells con-

taining a single vacancy, along with a k-point grid to reach the aforementioned

big system sizes. The usage of the Monkhorst-Pack k-points grid is actually com-

puting a big system made up with copies of the unit cell, thus containing multiple

defects. Our aim was then to check if there was any interaction between vacan-

cies that could lead to a not so accurate results of the VFE. In section 5.2.1 we

have performed simulations equivalent to those using the k-point grid within the
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Γ-only approach. The results have suggested that indeed there seems to be an

interaction between vacancies when the 128 unit cell system with a k-point grid is

used. Nevertheless, further studies need to be carried out, since the small system

size could be causing the difference in the VFE for the different approaches. In

section 5.2.2 an atomic monopole analysis of the systems has been performed. The

results seems to agree with those in section 5.2.1: a single vacancy in the center

of a 128 unit cell may change monopole values of atoms at the edge of the unit

cell, which could lead to an interaction between vacancies in neighboring unit cells.

This effect vanishes with the 2000 atoms unit cell.

In summary, we have proven that the linear scaling version of BigDFT may

become a really powerful tool to be used in large non-periodic system, as well as

periodic ones that present specific defects, such as point defects or even larger

defects such as vacancy clusters, where the usage of large unit cells would be

compulsory.

Finally, we reiterate that we are already working with simulations using the

FOE solver, as well as with structures presenting the SIA point defect. Unfor-

tunately, the results obtained up to now are not enough so that they could be

presented in this thesis. We hope that we obtain those results briefly and present

them in upcoming publications.
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