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Abstract

The characterisation of neutron resistant materials for the plasma facing component armour in
a fusion reactor has been established as one of the eight assignments needed to pursue in order
to make fusion electricity feasible [2]. So far, tungsten is being regarded as the ‘baseline’
material for this purpose [2]. Understanding the effect of irradiation on materials requires
developing atomic-scale models for radiation defects, which describe how the defects evolve
and interact [3].

This Master’s thesis tackles the computational study of vacancies in tungsten crystals by
means of Density Functional Theory in an implementation of the BigDFT code [4]. As a
continuity of the work developed by Marc Eixarch [1], particular emphasis is given to the
method used to calculate the energy of systems of different size. This energy is first calculated
from scratch for those systems and afterwards using previously generated support functions.
The aim of this new approach is to overcome a possible dependence of the "convergence
rate" of the support functions with the system size and try to generate a set of consistent
results, and it is also faster. A detailed analysis of the correlation between size of the cells,
method used and calculated energies has been carried out.





Table of contents

List of figures ix

List of tables xi

1 Introduction 1
1.1 Scientific context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Essentials on fusion research . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Tungsten as a material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Density functional theory and its implementation in BigDFT 5
2.1 The density functional theory (DFT) . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The Hohenberg-Kohn theorems . . . . . . . . . . . . . . . . . . . 7
2.1.2 The Kohn-Sham method . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Solid-state physics in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Numerical methods and further approximations . . . . . . . . . . . . . . . 13

2.3.1 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Linear scaling approach . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Particularities of metallic systems . . . . . . . . . . . . . . . . . . 17

2.4 Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.1 The Haar wavelet family, an iconic approach to wavelets . . . . . . 18
2.4.2 Three dimensional wavelets . . . . . . . . . . . . . . . . . . . . . 21

2.5 BigDFT; the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Implementation of wavelets and resolution levels . . . . . . . . . . 22
2.5.2 Implementation of the linear scaling approach . . . . . . . . . . . . 23

3 Study of point defects by means of BigDFT 27
3.1 Brief introduction to point defects . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Ab initio W-crystal simulations by means of BigDFT . . . . . . . . . . . . 29



viii Table of contents

3.3 Full system approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Fragment approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Atomic fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Onion-alike cluster fragments . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Two cluster fragments . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Brief study of the CPU time consumption . . . . . . . . . . . . . . . . . . 41

4 Conclusions and future work 43
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References 45



List of figures

1.1 Magnetic confinement devices: tokamak and stellarator . . . . . . . . . . . 3
1.2 Representations of different atoms distributions; minimal cell and lattice . . 4

2.1 Example of a Wigner-Seitz cell . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Representation of the pseudopotential approximation . . . . . . . . . . . . 15
2.3 Density of states in a metal . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The Haar scaling function φ and the wavelet ψ . . . . . . . . . . . . . . . 19
2.5 Piecewise function by means of the scaling-function of the Haar wavelet . . 19
2.6 Scaling function as linear combination of a scaling function and a wavelet . 19
2.7 Scaling function φ and wavelet ψ functions contribution . . . . . . . . . . 20
2.8 Least asymmetric Daubechies wavelet family of order 2m = 16 . . . . . . . 22
2.9 Visualisation of the fine and coarse regions of an example molecule . . . . 23
2.10 Flowchart of the minimal basis approach . . . . . . . . . . . . . . . . . . . 26

3.1 Scheme of two different point defects in a 250-atom tungsten crystal . . . . 28
3.2 Formation energies of various perfect and defect configurations . . . . . . . 31
3.3 Flowchart of the fragment approach . . . . . . . . . . . . . . . . . . . . . 33
3.4 Visualisation of the fragments . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Energy per atom for different perfect crystals through aromic fragmentats . 35
3.6 VFE for different atomic fragmentation for the 250-atoms crystal . . . . . . 36
3.7 VFE for different cluster fragmentations for the 250-atoms crystal . . . . . 37
3.8 VFE for different cluster fragmentation and system sizes . . . . . . . . . . 38
3.9 VFE for different cluster fragmentation and system sizes (bis) . . . . . . . 38
3.10 Visualisation of some two cluster shells systems . . . . . . . . . . . . . . . 39
3.11 VFE for different two cluster-shell fragmentations for the 250-atoms crystal 40
3.12 VFE for different 2 cluster fragmentations for the 250-atoms crystal (bis) . 40
3.13 CPU time since initialisation of the template and fragment calculations . . . 41
3.14 CPU time since initialisation of the template and fragment calculations . . . 42





List of tables

2.1 Three-dimensional scaling function and seven three-dimensional wavelets . 21

3.1 Basic parameters used in the full system approach . . . . . . . . . . . . . . 30
3.2 VFE for different cells in the full system approach . . . . . . . . . . . . . . 31





Chapter 1

Introduction

1.1 Scientific context

The next decades are crucially important to guiding the world on a path towards lower
greenhouse gas emissions. However, the world’s population will continue to grow and the
proportion of population living in cities is expected to keep increasing [5], which means that
even more sustainable energy will be needed later in the century. Nuclear fusion is one of
the few zero greenhouse gas emissions energy sources with the potential of replacing fossil
fuels. In addition to that, fusion energy is inherently safe, with zero possibility of a meltdown
scenario and no long lived waste, and depends on a virtually infinite fuel: water. But so far,
this is just a promise and commercial stations are unlikely to materialise before 2050 [6].

Nuclear fusion is the process by which two or more atomic nuclei come close enough to
form one or more different atomic nuclei and subatomic particles (neutrons or protons). It is
the process that powers stars and trough which the different elements are created. Among all
fusion processes, the main reaction fuelling the stars is the combination of light hydrogen
atoms (H) to produce the heavier element helium (He) and this is as well the process being
regarded to as an energy source on the Earth. In particular, due to its high cross section, the
most efficient fusion reaction in the laboratory is the reaction between two hydrogen isotopes;
deuterium 2

1H and tritium 3
1H.

2
1H+ 3

1H → 4
2He+ 1

0n (1.1)

The intermediate product of the reaction is an unstable 5
2He nucleus, which immediately

ejects a neutron with 14.1MeV . The recoil energy of the remaining 4
2He nucleus is 3.5MeV ,

so the total energy liberated is 17.6MeV [7].
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At very high speeds, when the ionised hydrogen atoms collide, the natural electrostatic
repulsion that exists between their positive charges is overcome and the atoms fuse. The mass
of the resulting He atom, however, is not the exact sum of the initial H atoms; as Einstein’s
famous formula E = mc2 describes, some mass m is lost and a great amount of energy E is
released [8]. In the Sun core, this process takes place at temperatures of around 1,5×107 K.
However, without the benefit of gravitational forces at work in the Universe and the resulting
pressure in the Sun, achieving fusion on Earth has required a different approach and, as
explained in Section 1.2, even higher temperatures [6].

Apparently, no known material can cope with that heat, and hence the process needs to
be confined in vacuum. Nevertheless, due to the direct contact with its hot edges, the
identification and study of suitable materials to construct the container of the nuclear fusion
vacuum is of central interest. On top of that, the collision of high-energy neutrons with the
wall of the reactor may cause great damage to the material that constitutes it, leading to
transmutation of atoms or creation of radiation defects that may evolve to big clusters of
defects and eventually change the microstructure of the material. At this point, the material
could start to behave unexpectedly or its lifetime be dramatically reduced [9]. Finding a
neutron resistant material has been set as one of the eight missions into which the EFDA’s
2012 roadmap broke down the quest for fusion energy [2]. Understanding these defects, both
qualitatively and quantitatively, is a first step towards this goal and the aim of this work.

Due to the exposure to high heat loads, the research in the field is focused on the study of
metallic structures, with high boiling and melting points, what results in fewer impurities in
the plasma, as well as high thermal conductivities. Among them, and as will be explained
in section 1.3, tungsten (W) is the leading candidate [10–12]. However, considering the
infeasibility of experimental studies under such conditions and of studying single point
defects at the macroscopic scale, the implementation of computational modelling methods to
simulate those situations is requested. In the context of computational materials science, ab
initio density functional theory methods enable the calculation and prediction of material
behaviour on the basis of quantum mechanical considerations, without requiring higher order
parameters such as fundamental material properties [13].

1.2 Essentials on fusion research

In order to overcome the electrostatic repulsion between them, the atomic nuclei must have
a sufficient speed or temperature. For example, for the deuterium-tritium reaction 1.1, this
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temperature is 109 K. However, this temperature is lowered by two reasons: Firstly, having a
substance at a certain temperature T , means actually that the average among the temperatures
of all its particles is T , meaning that some particles are cooler than T and some hotter.
Secondly, due to the quantum tunnelling effect1, there is a non-zero possibility that nuclei
can overcome the electrostatic barrier even with insufficient energy. As a consequence of
those two facts, the required temperature lies around 1,5×108 K. At this temperature, the
system is in plasma state, meaning that it is a cloud of electrons, protons and neutrons that
lacks a definite shape or volume. Unlike gases, plasmas are electrically conductive, produce
magnetic fields and electric currents, and respond strongly to electromagnetic forces.

Since no material can handle such heat, a magnetic field is used to confine plasma in a
vacuum. Magnetic fields do not slow down or speed up particles, but are only used to band
the trajectories within the plasma. Two main device types fulfilling these characteristics are
being investigated for the implementation of nuclear fusion as an energy source; tokamaks
and stellarators (see figure 1.1). The difference between a stellarator and a tokamak relies on
how the toroidal twisting of the confining magnetic field is generated. Tokamaks do so by
driving a plasma current, while stellarators get the magnetic field to bend around by changing
the shape of the toroidal coils.

Fig. 1.1 Magnetic confinement devices: tokamak (left) and stellarator (right). In blue, the
plasma vessel through which the plasma (yellow) circulates. The toroidal magnetic fields are
drawn in red, and green denotes other magnetic field coils (outer poloidal in the tokamak
case and helicoidal in the stellarator case). Image from [15].

Even though the magnetic confinement has proven to be extremely efficient, ever escaping
highly energetic neutral particles may collide with the bounding walls. Among those particles,

1The quantum tunnelling effect is a a quantum mechanical phenomenon where a particle tunnels through a
barrier that it classically cannot surmount [14].
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the neutrons ejected during reaction 1.1 are the most energetic ones, and hence the ones
representing a greater threat. To avoid too frequent replacements, the building element of the
reactor walls must be resistant to those events.

1.3 Tungsten as a material

Tungsten (W) is one of the most promising materials to be used as high-heat-flux material in
fusion reactors thanks to its high threshold for sputtering, high melting point and high thermal
conductivity [16, 17]. On top of that, W has proven to undergo little erosion under neutron
bombardment [10] and plasma–material interaction studies in the ASDEX tokamak indicate
W may be a plasma facing material which can provide sufficient lifetime of the first wall
components [18, 19]. The use of W on large surface areas in the same tokamak resulted in
low plasma impurities and very little W erosion from highly energetic neutral atoms escaping
from the plasma [20]. Even though the research on neutron resistant materials considers
more and more the use of different alloys to reduce the limitations of the material while
accentuating its advantages, the scope of this work focuses only on pure W-crystals.

The most stable phase of W is a body-centred cubic structure (bcc), a type of crystal structure
characterised by the minimal cell shown in figure 1.2a. By repeating this cell in space with
a translation rule one can build the whole system, as seen in figure 1.2b. The translation
vectors of the bcc structure have all the same length and are orthogonal to each other.

(a) The 2 atoms constituting the
minimal cell of a bcc structure.

(b) Perspectives of a 128-atoms bcc lattice.

Fig. 1.2 Representations of different atoms distributions; minimal cell and lattice. Atoms are
represented by grey spheres centred at their nuclei’s position. Notice how the lattices in 1.2b
are made up of repeating minimal cell blocks of the figure 1.2a type. Images from [1].



Chapter 2

Density functional theory and its
implementation in BigDFT

The aim of this chapter is to consider the theoretical background and code-implementation
used to tackle the study of the crystallographic system. To do so, we first start by presenting
density functional theory and then focus on its implementation in the BigDFT code. Density
functional theory is a quantum-mechanical modelling method widely used to investigate
the electronic structure of many-body systems. During the analysis of BigDFT, particular
attention is given to the code-dependent characteristics of DFT, while further information on
specific experimental details is to be presented along the next chapter.

2.1 The density functional theory (DFT)

Any problem in the electronic structure of matter is fully described by the time-dependent
Schrödinger equation [21]. In most cases, however, the atoms and molecules considered
lack time-dependent interactions, so the time-independent Schrödinger equation may be
used instead. For an isolated N-electron system in the Born-Oppenheimer 1 non-relativistic
approximation, this is given by

Ĥ |Ψ⟩= E |Ψ⟩ , (2.1)

1 The Born–Oppenheimer approximation is the assumption that the motion of atomic nuclei and electrons
in a molecule can be separated [22], so that: Ψtotal = Ψelectronic ⊗Ψnuclear .
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where E is the electronic energy of the wave function 2 |Ψ⟩= |Ψ(x1, ...,xN)⟩, which depends
on the spatial and spin coordinates of electron i (i.e., ri and si respectively) comprised in xi.
Ĥ is the Hamiltonian operator, which using atomic units3 is written as:

Ĥ =
N

∑
i=1

(
−1

2∇
2
i
)
+

N

∑
i=1

v(ri)+
N

∑
i< j

1
ri j

, (2.2)

Here, ri j is the distance |ri − r j| between electron i and electron j and

v(ri) =−∑
α

Zα

riα
(2.3)

is the "external" potential acting on electron i, due to nuclei of charges Zα placed at a distance
riα = |ri − rα |. Equation 2.2 may be written more compactly as

Ĥ = T̂ +V̂ne +V̂ee , (2.4)

with

T̂ =
N

∑
i=1

(
−1

2∇
2
i
)
, V̂ne =

N

∑
i=1

v(ri), V̂ee =
N

∑
i< j

1
ri j

, (2.5)

corresponding to the kinetic energy, the electron-nucleus attraction energy and the electron-
electron repulsion operators respectively.

The density functional theory of electronic structure is a remarkable theory that allows
one to replace the complicated N-electron wave function |Ψ(x1, ...,xN)⟩ and its associated
Schrödinger equation by the much simpler electronic density ρ(r) and its associated calcula-
tion scheme. In 1964, after a first attempt by Thomas and Fermi [23, 24], Hohenberg and
Kohn [25] proved in two theorems that such an approach was possible. This will be shown in
the following section. From now on, bear in mind that, if Ψ is normalised, the expectation
value of an observable A is given by

A[Ψ] =
〈
Â
〉
= ⟨Ψ| Â |Ψ⟩=

∫
Ψ

∗ÂΨdx (2.6)

where
∫

dx stands for integration over 3 spatial coordinates and spin. The square brackets
denote that Ψ determines A; A is said to be a functional of Ψ.

2 In quantum physics, the wave function is a mathematical description of the quantum state of an isolated
quantum system.

3In Hartree atomic units the following four physical constants are unit by definition: the electron mass me,
the electron charge e, Planck’s constant h̄ and Coulomb’s constant ke.
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2.1.1 The Hohenberg-Kohn theorems

The first Hohenberg-Kohn theorem legitimises the use of the electron density ρ(r) as the
basic variable, instead of Ψ(x1, ...,xN). In an electronic system, the electron density ρ(r) is
defined as the number of electrons per unit volume in a given state, so that∫

ρ(r)dr = N. (2.7)

Theorem 1. The external potential v(r) is determined, up to a trivial additive constant, by
the electron density ρ(r).

Proof. Consider the electron density ρ0(r) for the non-degenerate ground state of some
N-electron system. ρ0(r) determines N by simple quadrature 2.7. If there were two external
potentials v1 and v2 differing by more than a constant, each giving the same ρ0 for its ground
state, two Hamiltonians H1 and H2 would arise, whose ground state densities were the same
although the normalised wave functions Ψ0

1 and Ψ0
2 would be different. Taking Ψ0

2 as a trial
function:

E0
1 <

〈
Ψ

0
2
∣∣ Ĥ1

∣∣Ψ0
2
〉
=
〈
Ψ

0
2
∣∣ Ĥ2

∣∣Ψ0
2
〉
+
〈
Ψ

0
2
∣∣ Ĥ1 − Ĥ2

∣∣Ψ0
2
〉
= E0

2 +
∫

ρ(r)[v1(r)− v2(r)]dr,
(2.8)

where E0
1 and E0

2 are the ground state energies for Ĥ1 and Ĥ2, respectively. Similarly, taking
Ψ0

1 as a trial function for the Ĥ2 problem:

E0
2 <

〈
Ψ

0
1
∣∣ Ĥ2

∣∣Ψ0
1
〉
=
〈
Ψ

0
1
∣∣ Ĥ1

∣∣Ψ0
1
〉
+
〈
Ψ

0
1
∣∣ Ĥ2 − Ĥ1

∣∣Ψ0
1
〉
= E0

1 −
∫

ρ(r)[v1(r)− v2(r)]dr.
(2.9)

Adding 2.8 and 2.9, results in E0
1 +E0

2 < E0
2 +E0

1 ; a contradiction. Hence, there cannot be
two different v(r) that give the same ρ at the ground state.

Since ρ(r) determines both N and v(r), it follows that ρ(r) also determines all the other
electronic properties of the system, including its ground state, or lowest-energy state, with
wave function |Ψ0⟩.

Writing Ev instead of E to make the dependency on v explicit, the expectation value of
equation 2.4 can be written as follows,

Ev[ρ] =Vne[ρ]+F [ρ], (2.10)
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with
F [ρ] = T [ρ]+Vee[ρ]. (2.11)

Notice that F [ρ] is defined independently of the external potential v(r), so it is a universal
functional that depends on ρ(r).

The second Hohenberg-Kohn theorem provides the energy variational principle.
Theorem 2. For a trial density ρ̃(r), such that ρ̃(r)⩾ 0 and

∫
ρ̃(r)dr = N,

E0 ⩽ Ev[ρ̃], (2.12)

where Ev[ρ̃] is the energy value resulting of applying the functional 2.10 to the given system.

Proof. The previous theorem assures that ρ̃ determines its own ṽ, H̃ and Ψ̃, which can be
taken as trial function. Thus,〈

Ψ̃
∣∣ Ĥ

∣∣Ψ̃〉
=

∫
ρ̃(r)v(r)dr+F [ρ̃] = Ev[ρ̃]⩾ Ev[ρ] = ⟨Ψ| Ĥ |Ψ⟩ . (2.13)

Assuming differentiability of Ev[ρ], the variational principle 2.12 requires the ground state
density to satisfy the stationary principle

δ

{
Ev[ρ]−µ

[∫
ρ(r)dr−N

]}
= 0, (2.14)

which gives the the Euler-Lagrange equation

µ =
δEv[ρ]

δρ(r)
= v(r)+

δF [ρ]

δρ(r)
. (2.15)

where the chemical potential µ is the Lagrange multiplier associated to the constraint 2.7.

Although extremely powerful, in practice the Hohenberg-Kohn theorems do not offer a way
of computing the ground state density of a system. About a year after the Hohenberg-Kohn
theorems were published, Kohn and Sham [26] devised an approach that made DFT feasible.
The Kohn-Sham ansatz is that the exact ground state density can be written as the ground
state density of a fictitious system of non-interacting particles. This then gives a set of
independent particle equations that can be solved numerically.
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2.1.2 The Kohn-Sham method

Let us start by presenting the exact formula for the ground-state kinetic energy

T = ⟨Ψ|−∑
i

1
2∇

2
i |Ψ⟩ (2.16)

and reminding that the Hohenberg-Kohn theory assures that T is a functional of ρ(r), which
can be written as

ρ(r) = N ∑
s1

· · ·∑
sN

∫
dr2 · · ·

∫
drN |Ψ(r,s1,r2,s2, ...,rN ,sN)|2 . (2.17)

For any interacting system of interest, Ψ in equations 2.16 and 2.17 may have an infinite
number of determinants if built from single particle orbitals as Slater determinants. Kohn and
Sham’s approach proposed approximating the kinetic energy T of an N interacting electrons’
system with the kinetic energy Ts of a fictitious system of N non-interacting electrons that
yield ρ(r). Using the Kohn-Sham method, one ends up using only one determinant. To this
end, orbitals ψi(r) are introduced, and an equivalent description of Ts and ρ(r) are given:

Ts[ρ] = ∑
i

fi ⟨ψi|− 1
2∇

2 |ψi⟩ (2.18)

ρ(r) = ∑
i

fi |ψi(r)|2 . (2.19)

In the previous equations fi is the Fermi function that determines the occupation of the i-th
orbital so that ∑i fi = N with 0 ≤ fi ≤ 1.

fi =
1

1+ exp
[

εi−µ

kBT

] . (2.20)

Here, εi is the energy of the i-th orbital, µ the chemical potential, kB Boltzman’s constant
and T the electronic temperature, often assumed to be zero. Notice that at T = 0, fi equals 1
or 0 (depending on the sign of εi −µ). This case corresponds to the ground state density in
which only the N lowest Kohn-Sham orbitals are occupied.

In addition to that, the electron-electron Vee[ρ] interaction term is also rewritten as the
Coulomb interaction term J[ρ], which only takes into account the classical interaction
between electrons.

J[ρ] =
1
2

∫ ∫ 1
r12

ρ(r1)ρ(r2)dr1dr2 (2.21)
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To produce the desired separation out of Ts[ρ] as the kinetic energy component and J[ρ] as
the electron-electron interaction, 2.11 is redefined as

F [ρ] = Ts[ρ]+ J[ρ]+Exc[ρ] (2.22)

where
Exc[ρ] = T [ρ]−Ts[ρ]+Vee[ρ]− J[ρ] (2.23)

is called the exchange-correlation energy, which contains the difference between T and Ts,
presumably fairly small [13], and the non-classical part of Vee[ρ], including the relativistic
dependence of mass on the velocity (see [27] for an introductory explanation).

By doing so, the Euler equation 2.15 becomes

µ = veff(r)+
δTs[ρ]

δρ(r)
, (2.24)

where the Kohn-Sham effective potential is defined by

veff(r) = v(r)+
δJ[ρ]
δρ(r)

+
δExc[ρ]

δρ(r)
= v(r)+

∫
ρ(r′)
|r− r′|

dr′+ vxc(r). (2.25)

vxc(r) is the so called exchange-correlation potential.

Equation 2.24 with the constraint 2.19 corresponds to equation 2.15 if applied to a system of
non-interacting electrons moving in the external potential vs(r) = veff(r). Therefore, for a
given veff(r), the ρ(r) that satisfies 2.24 is obtained by solving the N one-electron equations[

−1
2∇

2 + veff(r)
]

ψi = εiψi i = 1, ...,N (2.26)

where εi are the eigenvalues of the Kohn-Sham orbitals ψi.

Equations 2.25-2.26 are the celebrated Kohn-Sham equations, through which the kinetic
operator is made particle-independent. However, this comes with a price: the quality of the
results will depend on the quality of the exchange-correlation functional Exc[ρ], the exact
form of which is unknown. Its value can only be determined through approximations.

For completeness, the final energy functional under the Kohn-Sham approach is written as
follows:
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EKS[ρ] = Ts[ρ]+ J[ρ]+Exc[ρ]+
∫

v(r)ρ(r)dr

=
N

∑
i
⟨ψi|− 1

2∇
2 |ψi⟩+

1
2

∫ ∫ 1
r12

ρ(r1)ρ(r2)dr1dr2 +Exc[ρ]+
∫

v(r)ρ(r)dr
(2.27)

Before addressing the numerical methods and approximations required to actually implement
DFT, a brief introduction to some important concepts of condensed-matter and solid-state
physics need to be discussed. This is done along the following section.

2.2 Solid-state physics in a nutshell

The target category of materials to be considered for the wall of the fusion reactor is restricted
to pure metals and metallic alloys, specially containing W, in solid state, which are periodic
regular arrangements of atoms (i.e., crystals).

A discrete but infinite regular arrangement of points (lattice sites) in a vector space is called
a lattice. Lattices which exhibit a discrete translational symmetry are referred to as Bravais
lattices. In the R3 space, this means that translation of the whole lattice by any translation
vector t leave the lattice unchanged. t is given by

t = ma1 +na2 +oa3 m,n,o ∈ Z, (2.28)

where ai are known as the primitive vectors that span the lattice and determine the unit cell
dimension. Bravais lattices are completely characterised by equations of this type.

A crystal is defined as a lattice the points of which have been filled in with an atom or group
of atoms. To enhance understanding of crystal structures, the concept of cell is introduced.
A cell is a small element that can build up the whole crystal without overlaps nor gaps by
repetitive arrangement (see figure 1.2b). A cell that contains exactly one lattice point, is
named primitive cell. A primitive cell of particular interest is the Wigner–Seitz cell around a
lattice point (i.e., atom), which is defined as the locus of points in space that are closer to that
lattice point than to any of the other lattice points (see figure 2.1).
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Fig. 2.1 Example of the construction of a Wigner-Seitz cell, where the red dots represent the
points or atoms in the Bavais lattice and the green enclosed regions are Wigner-Seitz cells.
Image from [28].

A particle in a periodically-repeating environment (e.g., an electron in a crystal) can be
described by Bloch waves Ψk(r), which are wave functions of the type

Ψk(r) = Ψ0(r) · eikr, (2.29)

where eikr is a plane wave4 and Ψ0(r) is a periodic function with the same periodicity as the
crystal. This is the so called Bloch theorem.

The reciprocal lattice is defined as the set of vectors k for which the corresponding Bloch
waves have the periodicity of the Bravais lattice t, so that

Ψk(r)
!
= Ψk(r+ t) ⇔ Ψ0(r) · eikr = Ψ0(r+ t) · eik(r+t) ⇔ eikt = 1 ⇔ k · t = 2πl, l ∈ Z.

(2.30)
This defines a set of vectors k with respect to the set of Bravais lattice vectors t. The
reciprocal lattice is defined similarly to the initial Bravais lattice 2.28

k = pb1 +qb2 + rb3 p,q,r ∈ Z, (2.31)

with the restriction bi ·a j = 2πδi j arising from equation 2.30. In the same way the Bravais
lattice is divided up into Wigner-Seitz cells in the real lattice, the reciprocal lattice is broken
up into Brillouin zones (see figure 2.1).

The electronic ground state of a periodic system is usually described in terms of extended
Bloch orbitals, simultaneous eigenstates of the periodic Hamiltonian and of the direct lattice
translations [29]. Having defined the reciprocal lattice enables an alternative representation
in terms of localised orbitals through the so called Wannier functions.

4A plane wave is a wave whose wave fronts are infinite parallel planes.



2.3 Numerical methods and further approximations 13

In chemistry, localised molecular orbitals are functions that describe the wave-like behaviour
of an electron in a molecule concentrated in a limited spatial region. The Wannier functions
are a complete set of orthogonal, strictly localised functions that are the analogue to the
molecular orbitals for crystalline systems. The simplest and most common definition of
Wannier functions is the one based on the Bloch waves 2.29 of a single energy band5 in a
perfect crystal. Then, Wannier functions are defined by

φt(r) =
1√
N ∑

k
e−ik·t

Ψk(r). (2.32)

As localised molecular orbitals, Wannier functions decay exponentially with the distance r
[30].

2.3 Numerical methods and further approximations

The aim of practical calculations is usually to find the final energy given by equation 2.27, for
which simple approximations to Exc[ρ] are used. The Kohn-Sham equations 2.25-2.26 are
started with an initial guess for the density ρ , yielding a Kohn-Sham potential via equation
2.25. The Kohn-Sham equations are then solved and a new density is found. This cycle is
repeated until changes become negligible, i.e., the system is self-consistent [31]. However,
the exact functionals for the exchange-correlation potential vxc(r) is only known for the free
electron gas. Hence, the basic idea of the approximations is to use the exchange-correlation
function Exc[ρ] of an electron gas with the same electron density as the real target system.

∗ Local (spin) Density approximation - LDA, which assumes Exc[ρ] depends only on the
density at the coordinate where the functional is evaluated

Exc[ρ] =
∫

exc(ρ(r))dr, (2.33)

where exc is the exchange-correlation energy of a uniform gas of density ρ(r). The
LDA assumes the density ρ(r) to be the same everywhere. Because of this, LDA has a
tendency to underestimate some of the terms in Exc and overestimate some others.

5In solid-state physics, each of the energies that an electron within the solid may have is called energy band
or simply band.
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∗ Generalised-Gradient approximation - GGA, which accounts for the non-homogeneity
of the true electron density by expanding in terms of the gradient of the density.

Exc[ρ] =
∫

exc(ρ(r),∇ρ(r))dr (2.34)

The GGA method results in much better outcomes for more complex systems, at expenses of
computational time, and has become the standard.

At this stage, three main issues would still make simulations tough and computationally
expensive. Along the following subsections the approaches required to overcome them are
tackled.

i. Metals usually have a lot of electrons per atom. Taking into account that each electron
implies the calculation of an orbital function, the cost of calculation is proportional to
the cube of the electrons-per-atom ratio and may be huge.

ii. The fact that a radiation defect breaks the periodicity of a perfect lattice demands the
use of big cells, but DFT simulations scale O(N3) with the system size.

iii. Metallic systems impose further difficulty in DFT simulations due to their zero energy
gap between the highest occupied and lowest unoccupied electronic orbitals (HOMO-
LUMO gap).

2.3.1 Pseudopotentials

Electrons close to the core region of an atom are usually not involved in chemical reactions,
nor change significantly their atomic features when the atom interacts in a system. In addition
to that, the remaining electrons, placed in the valence orbitals, acquire their oscillating
behaviour mainly due to orthogonality constraints to the core orbitals (i.e., Pauli’s exclusion
principle). In the pseudopotential approximation, the original atoms that constitute a given
chemical system are modified by removing the core energy levels and replacing the potential
of the atomic nucleus and of the core electrons by a pseudopotential (see figure 2.2). The
Pauli exclusion principle is then enforced through repulsive pseudopotential [32].

It is worth noticing that the use of pseudopotentials does not only decrease the complexity
of the calculation by reducing the number of orbitals and avoiding the need of very high
resolution around the nuclei, specially in the case of atoms with high atomic number, but
also offers the possibility of easily including relativistic effects [33].
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(a) Representation of the atom. (b) Representation of its pseudopotential.

Fig. 2.2 Pseudopotential approximation process for a Cl– atom.

2.3.2 Linear scaling approach

Any approach to the Kohn-Sham equations 2.25-2.26 which involves calculating and ma-
nipulating the one-electron functions directly will inevitably scale as O(N3): at least O(N)

orbitals are required, to describe the O(N) electrons occupying them; each orbital extends
over the whole system and thus any manipulation of it requires an O(N) effort; and the
constraint of mutual orthogonality between these orbitals means that minimisation of the
energy can only be achieved with an extra O(N) work [34]. To circumvent this problem,
one can exploit Kohn’s nearsightedness principle, which states that, given a substance at
finite temperature (or even at T = 0 in the case of non-metals), all its physical quantities are
determined by the local chemical environment [35–37].

Within DFT, as seen in section 2.1.2, the total energy can be regarded as a functional of the
occupied Kohn-Sham orbitals ψi(r) and the ground state can be obtained by minimising the
total energy with respect to these orbitals. Equivalently, the total energy can be treated as a
functional of the electron density matrix ρ(r,r′) [38], defined as

ρ(r,r′) = ∑
i

fiψi(r)ψ∗
i (r

′). (2.35)

where fi is again the Fermi function 2.20. In this approach, the extended Kohn–Sham orbitals
are expressed as a set of localised adaptively contracted basis functions called support
functions φα .

ψi(r) = ∑
α

cα
i φα(r). (2.36)
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The density matrix 2.35 is then given by

ρ(r,r′) = ∑
αβ

φα(r)Kαβ
φ
∗
β
(r′), (2.37)

where Kαβ = ∑i ficα
i cβ

i is the density kernel, which, as follows from equation 2.36, is the
representation of the density matrix ρ(r,r′) in the support function basis [33].

At this stage, the Kohn-Sham orbitals have to be optimised by minimising the total energy
with respect to the support functions and density kernel. Forced by the self-consistency of
the method, this is equivalent to minimising the band structure energy EBS, i.e.,

EBS = ∑
αβ

Kαβ Hαβ , (2.38)

subject to the orthogonality condition of the Kohn-Sham orbitals

ψ
∗
i ψ j = ∑

α,β

cα∗
i φ

∗
i φ jc

β

j = δi, j (2.39)

where
Hαβ = ⟨φα |HKS

∣∣φβ

〉
(2.40)

is the Hamiltonian matrix in the support functions basis as in equation 2.26. Equation 2.39 is
also equivalent to an idempotent density kernel, i.e., K2 = K.

Up to this point, a new formalism has been introduced, but no extra approximation has been
applied. Linear scaling of computational effort relies on the fact that the density kernel Kαβ

is nearsighted and hence, can be truncated for orbitals the centres of which are separated by
more than some cut-off length. Hence, a natural and exact choice for these support functions
would be the maximally localised Wannier functions6, which have the same exponential
decay [30].

Of course, these Wannier functions are not known beforehand. Therefore, the basis functions
are constructed in situ and are expected to reach a quality similar to that of the exact

6The functions φα can be thought of as a combination of a subspace rotation M(k) of the Bloch orbitals at
each k and a unitary transformation in k-space, localising them to a super cell at position R [34]

φα(r) =
V

(2π)3

∫
BZ

e−ik·R

[
∑

i
ψik(r)Miα(k)

]
dk. (2.41)
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Wannier functions along a self-consistent cycle. The algorithm therefore consists of two key
components: firstly, optimisation of the support functions and secondly, optimisation of the
density kernel. The work-scheme 2.10 is based on a double loop structure, with the outer
loop controlling the overall convergence, and two inner loops to optimise both the support
functions and density kernel. The first of these inner loops is done non-self-consistently (i.e.,
with a fixed potential), whereas the second one is done self-consistently [33].

2.3.3 Particularities of metallic systems

Fig. 2.3 Schematic illustration of the density of states (DOS) in a metal depending on their
energy. The dark region represents the energy distribution of the electrons in each system.
The left-hand panel shows the density of states without smearing; the right-hand panel shows
it with smearing. Image from [39].

When using periodic boundary conditions, the electron density of the system becomes an
integral over the 1st Brillouin zone in reciprocal space. In practice, this integral is evaluated
by summation over a finite number of k-points (points in the reciprocal space). One major
problem in the case of metals arises from the fact that the metallic energy levels are very close
to one another. Thereby, the gap between the highest occupied and lowest unoccupied orbitals
(HOMO and LUMO gap) is very narrow and the transition between occupied and unoccupied
orbitals is sudden and difficult to localise. In this case, the function being integrated is
discontinuous, what dramatically decreases the accuracy of whichever finite set of k-points
in the Brillouin zone and complicates reaching convergence along the self-consistent cycle
[39].

The most interesting technique to overcome this problem consists in increasing the tem-
perature of the system slightly; as seen in equation 2.20 and figure 2.3, this smooths the
functions at the Fermi level and facilitates convergence. However, this comes with a price: a
new functional with electronic temperature different than 0K is calculated instead of the real
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one, what has the advantage that also assures the exponential decay of the density matrix
with respect to distance. Indeed, usually temperatures of thousands of degrees need to be
considered [40]. The error arising from this fact must be considered carefully.

On top of that, due to their conductivity and the delocalisation of electrons, the nearsight-
edness is less pronounced for metals than for insulators. The application of linear scaling
DFT to metallic systems has been rather limited until now that a strategy to overcome those
limitations has been set, and its validity and limitations are still to be determined.

2.4 Wavelets

Yet a last aspect needs to be tackled in order to numerically solve the Kohn-Sham equations;
the choice of the basis used to represent the support functions φα of the Kohn-Sham orbitals.
From a computational point of view, this is one of the most important characteristics of a
DFT code [41].

Most of the DFT implementations work with plane waves or Gaussian basis sets. Due to
their non-localised nature, plane waves are certainly suitable in the case of periodic and/or
homogeneous systems but inefficient in expanding localised information. Gaussian basis,
which stand out in this last feature, happen to be non-systematic7, so over-completeness
may be achieved before convergence. Wavelets are just another basis set, that is orthogonal,
systematic, and at the same time localised and adaptive.

2.4.1 The Haar wavelet family, an iconic approach to wavelets

In order to introduce the reader to the concept of wavelet, the Haar wavelet family [42] is
presented [43]. The Haar wavelet function, represented in figure 2.4, is the simplest wavelet
family.

Any wavelet family comprises two fundamental functions, namely, the scaling function φ

and the wavelet Ψ. To obtain a basis set at a certain resolution level k, we can use all the
integer translations of the scaling function

φ
k
i (x) = φ(2kx− i). (2.42)

7Given a Partial Differential Equation, a systematic basis set enables the calculation of its solution with
arbitrarily high precision as the number of basis functions is increased.
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Fig. 2.4 The Haar scaling function φ and the wavelet ψ . Image from [43].

Fig. 2.5 Piecewise constant function f by means of the scaling-function of the Haar wavelet
at resolution level 4 and the scaling function of the same resolution. Image from [43].

Notice that with this convention, higher resolution corresponds to larger values of k. Exactly
the same scaling and shifting operations can also be applied to the wavelets

ψ
k
i (x) = ψ(2kx− i). (2.43)

In the case of the Haar family, any function that can exactly be represented at any level of
resolution is necessarily piecewise constant. One such function is shown in figure 2.5. This
function can be written in a scaling function representation as

f =
15

∑
i=0

s4
i φ

4
i (x), (2.44)

where s4
i = f (i/16). A wavelet representation is possible because a scaling function at

Fig. 2.6 A skinny (level k) scaling function is a linear combination of a fat (level k− 1)
scaling function and a fat wavelet. Image from [43].
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Fig. 2.7 Scaling function φ (left) and wavelet ψ (right) functions contribution, as expressed
in equation 2.45. Notice how the scaling function is ”smooth”, while the wavelet experiences
sudden changes. Image from [44].

resolution level k is always a linear combination of a scaling function and a wavelet at the
next coarser level k−1 [43], as shown in figure 2.6. Using this property, f is rewritten as

f =
7

∑
i=0

s3
i φ

3
i (x)+

7

∑
i=0

d3
i ψ

3
i (x). (2.45)

It is easy to verify that the transformation rule for the coefficients is given by

sk−1
i =

1
2

sk
2i +

1
2

sk
2i+1 ; dk−1

i =
1
2

sk
2i −

1
2

sk
2i+1. (2.46)

This transformation can be repeatedly applied to any data set whose size is a power of 2.
In each step the number of s coefficients will be cut into half, and the procedure has to be
stopped when only one s coefficient is left. Such a series of transformation steps is called a
forward Haar wavelet transform. The resulting wavelet representation of the function f is

f = s0
0φ

0
0 (x)+d0

0ψ
0
0 (x)+

1

∑
i=0

d1
i φ

1
i (x)+

3

∑
i=0

d2
i ψ

2
i (x)+

7

∑
i=0

d3
i ψ

3
i (x). (2.47)

Notice that the total number of expansion coefficients is kept equal to 16 among equations
2.44, 2.45 and 2.47, so the load of information is kept. Figure 2.7, which depicts the wavelet
and scaling contributions, shows how the scaling function represents a smoothed version of
f , while the wavelets represent the rapidly varying corrections to the smoothed function 8.
Actually, the contribution of the wavelet is rather localised; some of the wavelet coefficient
may be zero, which may allow compression of data.

If wavelets are to be implemented to solve the Kohn-Sham equations 2.25-2.26, the chosen
set needs to be three dimensional. On top of that, the application of the kinetic energy
operator 1

2∇2
i from 2.5 requires them to be differentiable, what they fortunately can be [45].

8In this particular case the word smooth may lead to confusion, due to the non-continuous nature of the
example function. In the continuous case, this assumption is more consistent.
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2.4.2 Three dimensional wavelets

The easiest way to construct a three-dimensional basis set consists in forming products of
one dimensional scaling functions and wavelets, as shown in table 2.1. This gives rise to one
three-dimensional scaling function φi, j,k, which is a product of three one-dimensional scaling
functions, and seven three-dimensional wavelets ψn

i, j,k, which are products containing at least
a one-dimensional wavelet.

Table 2.1 Three-dimensional scaling function φi, j,k and seven three-dimensional wavelets
ψn

i, j,k .

φi, j,k = φ(x− i)φ(y− j)φ(z− k) ψ4
i, j,k = ψ(x− i)ψ(y− j)φ(z− k)

ψ1
i, j,k = ψ(x− i)φ(y− j)φ(z− k) ψ5

i, j,k = ψ(x− i)φ(y− j)ψ(z− k)

ψ2
i, j,k = φ(x− i)ψ(y− j)φ(z− k) ψ6

i, j,k = φ(x− i)ψ(y− j)ψ(z− k)

ψ3
i, j,k = φ(x− i)φ(y− j)ψ(z− k) ψ7

i, j,k = ψ(x− i)ψ(y− j)ψ(z− k)

The three-dimensional scaling functions and wavelets fulfil as well orthogonality and refine-
ment relations which are generalisations of the ones for the one-dimensional case.

2.5 BigDFT; the code

BigDFT is a free quantum chemistry and solid state physics software that calculates the total
energy, charge density, and electronic structure, as well as their derived quantities, of systems
such as molecules or periodic/crystalline solids by means of DFT. In the own words of its
developers:

"BigDFT is a DFT massively parallel electronic structure code that uses a wavelet basis set.
GTH or HGH pseudopotentials are used to remove the core electrons. Thanks to our Poisson
solver based on a Green function formalism, periodic systems, surfaces and isolated systems
can be simulated with the proper boundary conditions." [4]
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2.5.1 Implementation of wavelets and resolution levels

BigDFT uses the least asymmetric Daubechies of order 16, which, as all the Daubechies
wavelets, is asymmetric, orthogonal, differentiable and has compact support9. Figure 2.8,
shows the scaling and wavelet functions of this family; notice the functions are continuous.

Fig. 2.8 Least asymmetric Daubechies wavelet family of order 2m = 16; both the scaling
function ψ(x) and wavelet φ(x) differ from zero only within the interval [1−m,m]. Image
from [33].

As already seen in section 2.4.1, one of the advantages of wavelets is the fact that they allow
different levels of resolution (see figure 2.9). Since the grid spacing is constant along the
simulation box, the different resolution levels are obtained by associating a number of scaling
and wavelet functions to each grid point depending on the region they belong to. This feature
enables a further optimisation of computational resources. BigDFT allows three levels of
resolution:

i. High resolution for the region closer to the nuclei (i.e., fine region), for which each
grid point is assigned a scaling function and seven wavelets.

ii. Medium resolution for the grid points further apart from the nuclei (i.e., coarse region),
since the functions in this region tend not to change abruptly. Its resolution is half that
of the fine region because only one scaling function and no wavelet are assigned per
grid point.

iii. Points even further away from the nuclei, which do not contribute in any way to any of
the previous regions are not considered.

Given a fine radius r, the fine region is the region of space defined by the union of all spheres
with radii r centred at each of the nuclei. Given a coarse radius R, so that r < R, the coarse
region is defined analogously, as the space defined by the union of all spheres with radii R

9A function has compact support if it is zero outside of a compact set.
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centred at each of the nuclei minus the fine region. The value of r and R is assigned by the
product of an atom-dependent constant and a user-specified factor.

Fig. 2.9 Visualisation of the fine (green) and coarse (yellow) regions for cinchonidine
(C19H22N2O). Image from [33].

2.5.2 Implementation of the linear scaling approach

In section 2.3.2, the theoretical background of the linear scaling approach has been presented.
In the following lines, the several steps used in BigDFT to exploit the decay properties of the
density matrix elements are discussed.

Wavelets, support functions and orbitals

BigDFT is based on support functions φα(r), which can be written in terms of wavelets ψ

and scaling functions ϕ . In their turn, support functions express the orbitals. The benefit of
this approach is that the dimension of the density matrix 2.37 is considerably reduced, while
its quality is still preserved.

φα(r) = ∑
m=i, j,k

(
sα

mϕm(r)+
7

∑
v=1

dα
m,vψ

v
m(r)

)
, (2.48)

where α is the index of the support function. The set of support functions used in a particular
simulation is optimised in-situ during the calculation. The cut-off length that delimits the
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nearsighted region and from which particles do not interact with each other any more,
introduced along section 2.3.2, is defined as

sα
m = 0,dα

m,v = 0 if |ri, j,k − rα |> Rcut-off. (2.49)

Hybrid optimisation mode

The hybrid optimisation mode is responsible of optimising the support functions φα(r). The
quantity that needs to be optimised is

Ω
hy = ∑

α

Kααφ
∗
αHαφα + ∑

β ̸=α

Kαβ φ
∗
αHφβ . (2.50)

Hα is the Hamiltonian H plus the extra factor that creates the confining potential. Notice that,
as the confinement of the potential Hα is decreased, Hα → H, thus leading to the expression
of the total energy.

Density kernel

Once the support functions are obtained, the density matrix can also be expressed by means of
this new basis as in equation 2.37, and so can the band structure energy EBS be (see equation
2.38). Using equation 2.37 and the fact that the density matrix ρ is sparse, a condition
analogous to 2.49 can be written in terms of the density kernel

Kαβ = 0 if |rα − rβ |> Rcut-off, (2.51)

where rα , rβ are the central position of the support function φα(r) and φβ (r′) respectively.

FOE and direct diagonalisation

The choice of the method through which the density kernel is optimised controls a large
factor of the total computational time of the simulation. Using one or another depends on
the complexity and size of the system under study. The BigDFT’s linear version allows the
following methods:

i. Fermi Operator Expansion (FOE): The FOE method directly calculates the density
kernel Kαβ in the basis of the support functions. The particular expansion of the
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operator in BigDFT uses the Chebyshev polynomial expansion10. The most important
feature of this method in terms of its applicability is that it scales linearly with the
system size because it exploits the sparsity of the matrices. Nonetheless, its pre-factor
is big and thus for small system sizes other methods might be preferable.

ii. Direct diagonalisation: Direct diagonalisation is the most straightforward method,
since it optimises the density kernel by performing a direct diagonalisation of the
Hamiltonian matrix in the basis of the support functions. It is very useful for small
systems because of its small prefactor, but it ends up being prohibitively expensive for
big ones due to its cubic scaling with the system’s size, since it does not exploit the
sparsity of the matrices.

In figure 2.10, the flowchart of the linear scaling BigDFT method is depicted. Notice there
are two inner loops, one for the support functions, which is optimised by the hybrid mode,
and one for the density kernel, which is either optimised by FOE or by direct diagonalisation.
The outer loop controls the convergence to the final value.

10Chebyshev polynomials are a sequence of orthogonal polynomials which are related to de Moivre’s formula
(cosx+ isinx)n = cos(nx)+ isin(nx) and which can be defined recursively.
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Fig. 2.10 Flowchart of the minimal basis approach: for the basis optimisation loop the hybrid
scheme is used, and for the kernel optimisation loop either direct minimisation or the Fermi
operator expansion method can be used in place of diagonalisation. Modified image from
[33].



Chapter 3

Study of point defects by means of
BigDFT

A fundamental description of defects on the atomistic scale requires the use of truly ab
initio models, such as DFT, which set the basis upon which models of higher scales are
built. As discussed along section 2.3, though, the study of point defects in W-crystals is a
challenging problem in terms of convergence of the simulation. Calculations regarding single
defects provide key point results such as lowest energy configuration of defects with high
precision. The calculations performed from scratch, however, are very time consuming and
do not succeed at describing the energy formation of those defects, and a new approach using
pre-calculated fragments will be considered.

The calculations were conducted on High Performance Computers, mainly in MareNostrum
but also in Marconi, with a peak of 4608 cores running in parallel for the same simulation. It
is clear that being able to keep a good scaling for this amount of resources requires of a deep
implementation of MPI and OpenMP in BigDFT.

3.1 Brief introduction to point defects

Nuclear reactions produced within the plasma in a fusion device generate highly energetic
neutrons and charged particles. Whenever these particles collide into the wall of a magnetic
confinement device, important changes in its physical and mechanical properties can arise;
if the microstructure of the material forming the vessel is changed, its physical behaviour
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may be affected. Under irradiation, a material may suffer of mainly two types of radiation
damage:

i. Structural distortions in the atomic structure (i.e., radiation defects or simply defects),
principally vacancies and self-intersticial atom defects (SIAs).

ii. Changes in the chemical composition of the material (i.e., transmutation reactions).

Along this work the scope is limited to the first group of defects. Vacancies and SIAs form
as a result of a process in which an atom is displaced from a lattice site and settles some
distance away from its initial position, and hence such vacancies and SIAs always form in
pairs, termed Frenkel pairs. In such a situation, the initially occupied lattice position becomes
a vacancy (see figure 3.1a) and the moved atom forms a SIA in its new position (see figure
3.1b).

The formation energy of a vacancy (VFE) is calculated by means of the following equation

E f (vacancy) = EN−1(relaxed)−
(

N −1
N

)
EN(perfect), (3.1)

where EN−1(relaxed) is the total energy of the simulation cell having removed one atom and
En(perfect) is the energy of an N-atom cell without any defect. Analogously, the formation
energy of a SIA defect is defined as

E f (SIA) = EN+1(relaxed)−
(

N +1
N

)
EN(perfect) (3.2)

where EN+1(relaxed) is the total energy of a simulation cell containing an extra atom [3].

(a) Visualisation of a vacancy. (b) Visualisation of a crowdion SIA defect.

Fig. 3.1 Scheme of two different point defects in a 250-atom W-crystal, which together
constitute a Frenkel pair.
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This type of radiation damage needs a multiscale analysis in order to be properly understood.
The starting point of defects happens on an atomistic scale, such as a single vacancy or a
single self-interstitial atom (SIA). This is the object of study of this work. However, apart
from a few remarkable exceptions described in [3], in all metals with closed-packed crystal
structures, these point defects tend to form clusters that could end up requiring other types of
models. On the mesoscopic scale the cascades may lead to a particular type of microstructural
evolution [3].

3.2 Ab initio W-crystal simulations by means of BigDFT

A fundamental description of defects on the atomistic scale requires a computational approach.
Particularly, it requires the use of truly ab initio models (i.e., computational chemistry
methods based on quantum chemistry) such as DFT. Those ab initio approaches form the
basis upon which models of higher scales are built. Calculations regarding single defects
provide key point results such as lowest energy configuration of vacancies with high precision,
which are the subject of study of this thesis.

In order to obtain the value of the VFE, two DFT simulations need to be performed: one for
the perfect structure and one for the defect structure. To do so, a set of ab initio calculations
were run by means of BigDFT, as described along Chapter 2 and summarised in figure 2.10.
It is important to point out that not only the perfect configurations, but also the defect ones,
are assumed to be relaxed. Removing an atom from a lattice changes the forces between its
atoms, what destabilises the system. Relaxing the system means hence moving the affected
atoms so that the forces cancel out and the system reaches a new equilibrium. This procedure
may be very time consuming when performed with DFT codes, so LAMMPS [46], a non-ab
initio force field code, has been used instead. Even though some error may arise as a result
of using a non-ab initio tool, this is assumed to be very small once the potential is accurately
parametrised using ab initio simulations. Oppositely, the consequences of ignoring the
relaxation of the structure would have been of great significance, with differences on the
VFEs that could have surpassed 1eV from its real value [47].

In particular, and as introduced in Chapter 1, the research is focused on periodic structures of
W-cells containing between 128 (43 minimal cells) and 1024 atoms (83 minimal cells) in the
perfect case and one atom less in the defect one. From now on, the systems will be named
by the number of atoms of their cells in the perfect case, so that, for example, the VFE of
a 250-atom system will refer to the energy required to remove an atom from a 250-atom
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system. For consistency, the parameters presented in table 3.1 have been kept constant along
the different approaches and simulations.

Table 3.1 Set of basic parameters used to run the different calculations in the full system
approach.

linear method direct diagonalisation

temperature [a.u.]1 10−3

electronic configuration 6s2 5d4

support functions per atom 9

3.3 Full system approach

The first approach to the VFE was a set of simulations that followed the flowchart seen in
figure 2.10. Figure 3.2 plots the total energy per atom of both the perfect and defect cases
depending on the system size, while table 3.2 shows the energy required to remove an atom
from the grid. The energy values plotted in figure 3.2 are normalised, meaning that the total
energy has been divided per the number of atoms to enable comparison among systems of
different sizes, whereas the VFE values have been directly obtained from the total energies
and by means of equation 3.1.

In figure 3.2, it is observed how the energy values of both the perfect and defect systems
stabilise as the system’s size grows, and some convergence can be foreseen. One should
notice that convergence needs to be checked by studing the energy differences instead of
the percentage errors, because energy is no absolute grade but a value susceptible of being
added any scalar constant. The energy difference between the first two sizes is about 0.2eV ,
while the one for the last pair decreases to 0.02eV , a 10% of the first one; clearly, reaching
convergence requires a large number of atoms.

When comparing the energy values of the perfect crystal with the ones of the crystal with
vacancy one observes that the relative effect of the vacancy decreases with the rise of the
number of atoms. It is hence reasonable to think that the vacancy inside the defect structure
does not affect the global lattice and only adds a small perturbation, which becomes less
apparent for bigger lattices. This pattern is more clearly observed in the E f (vacancy) values
given in table 3.2, where no relation between the VFE and the size of the system can be

11 a.u. = 3.1577464(55)×10−5K
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Fig. 3.2 Energy per atom in the full system approach calculations both in the perfect and
defect cases.

Table 3.2 VFE of the full system approach depending on the number of atoms in the cell.

number of atoms 128 250 432 686 1024

E f (vacancy) [eV ] 3.908 3.284 4.196 3.458 3.896

established. Instead of that, the VFE seems to "jump around" without converging to any
value, but still keeping close to the reference theoretical value of 3.56eV [49], which was
evaluated using the PLATO code [48].

The fact that the VFE cannot be clearly determined may be due to a bad signal-to-noise ratio;
we look for energy differences that are very small compared to the total energy of the system
(around 0.01%). However, even though larger systems would be required to get the energy
of the lattice to converge, the systems under study in this thesis may suffice to describe the
VFE. If the signal-to-noise ratio could be ameliorated, one would expect the VFE to stabilise
and become constant. An hypothesis is that the problem is related to a dependency of the
"convergence rate" of the support functions on the cell size. In the following chapter, a
new approach to the problem is presented in which the support functions are kept the same
regardless of the cell size, be it 250 atoms or 1024.



32 Study of point defects by means of BigDFT

3.4 Fragment approach

The central idea of the fragment approach is to take a group of atoms and fully optimise its
support functions [50]. These support functions are then used as a fixed basis for different
systems containing those fragments. The interpolation of the template basis rototranslated
to its new positions results in only a negligible loss of accuracy [50] and, since the support
functions can be directly reused, it guarantees them to have the same "convergence rate"
across various systems. This approach also reduces the computational cost of the calculations
by one order of magnitude, compared to optimising the support functions from scratch in the
full system approach.

As seen in figure 3.3, this approach modifies slightly the optimisation process shown in figure
2.10. In the image, and from now on, the first calculation, in which the support functions
are generated, is referred to as template, while the second calculation, the one that uses the
functions produced by the template calculation, is named fragment. Notice that the template
calculation is run just once per fragment configuration. Since the functions are not optimised
for each fragment calculation of different size, the fragment approach uses a slightly worse
set of support functions, but at least consistent between the different system sizes. If the
problem in the full system approach is to do with a difference in the "convergence rate" of
the support functions of the different systems, it might be solved through this approach.

But how do we determine the fragments? If the system under study was made up of molecules
or was a protein, one could think of clearly defined fragments corresponding to those isolated
molecules or amino acids, and one could assign, for example, a charge to each piece [51].
The metallic crystal case, however, is a system in which the charge is non-localised, and the
fragments are not so well defined nor can they be considered independently from one another.
Consequently, the problem has been approached from different sights that will be described
along the following lines. In any case, and oppositely to the representation of well defined
substructures where the templates consider isolated fragments, the fragments were already
built within the periodic crystal. Whenever the fragments are well defined, the template of
those fragments is run considering the fragments as free clusters in an isolated environment.
In our case, though, we consider them already to be within the periodic metallic environment.

In particular, the fragments were defined in periodic 250-W-atoms structures, or rather
periodic 250-W-atoms structures with vacancy (i.e., 249-W-atoms periodic structures). Only
the template of the 1 fragment case was built in a perfect 250-atoms cell periodic structure
(i.e., without vacancy). From the 2 fragments on, they all were built in a periodic 250-atom
cell structure with vacancy. Then, the fragments were understood to be related to the distance
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Fig. 3.3 Flowchart of the fragment approach with one first template calculation and different
fragment calculations. The template calculation is run for the 250-atom case and the generated
support functions are used as templates for all the systems with the same fragmentation.

from the vacancy and defined as shells around the defect in an onion-alike way. Figure 3.4
shows the simplest fragmentations considered - excluding the 1 fragment case, which would
be very similar to figure 1.2b, just containing 250-atoms instead of 128. Further details on
the definitions of fragments are presented in sections 3.4.1 and 3.4.2.

The reason why the system containing 250 atoms, and not the one containing 128, was taken
as a reference along the fragment approach is described in [1]. In its charge analysis, one
observes how a vacancy modifies appreciably the internal monopole distribution in such a
small system, what could affect the interaction with neighbouring periodic cells. On top of
that, [1] also shows that such a small system does not get the atomic monopoles to be neutral
in the perfect structure. This prevents the calculation of being in the converged range, what
agrees with the results presented in section 3.3.



34 Study of point defects by means of BigDFT

(a) 2 fragments (b) 3 fragments

(c) 4 fragments (d) 5 fragments

Fig. 3.4 Visualisation of the fragments in a 250-atom cell with vacancy depending on the
number of fragments considered. Atoms are represented by coloured spheres centred at their
nuclei’s position. The ones painted in blue are placed at the 1st fragment, the ones in orange
at the 2nd, the ones in green at the 3rd fragment and the ones in light red at the 4th, while
translucent pink spheres represent all the atoms contained in the last fragment.



3.4 Fragment approach 35

3.4.1 Atomic fragments

Since the criterion to identify a fragment within a metallic periodic system is not clearly
defined, the first approach to fragments was done considering 1-atom fragments. This is,
the atoms within a given set of fragments were considered equivalent to generate a set of
support functions that would then be applied independently to each of those atoms. The VFE
equation 3.1 requires the energy of both the perfect and defect systems, and both were here
approached through atomic fragments. To start with, figure 3.5 plots the results of the perfect
systems, which have been calculated by using the support functions generated within the
perfect 250-atom system in the different perfect systems.

Fig. 3.5 Energy per atom for different crystal sizes in the perfect configuration calculated by
means of the atomic fragment approach.

When comparing these results with the ones plotted in figure 3.2, the most interesting feature
one observes is how the energy of the 432 system differs considerably, and differentiates
from the rest of energies in the atomic fragment approach. We will come back to this issue
in section 3.4.2, once we can determine the VFE using the fragment approach. In any
case, determining the energy of perfect systems using support functions created in a perfect
crystal seems sensible, and these results will be set as EN(perfect) during the whole fragment
approach.

Having determined the energy of the perfect crystals, we now focus on the determination
of the energy in the defect crystal; the one with the vacancy. To start with, we focused
on the 250-atom system case (i.e., due to the vacancy, this system actually contains 249
atoms), so that not only the template calculation but also the fragment computations were
run considering the periodic 249-atom system (remember that only the 1-fragment fragment
computation is based on the perfect 250-atom cell, while from the 2-fragment fragment
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computation on the support functions are produced in the 249-atom system). The resulting
VFEs are plotted in figure 3.6.

Fig. 3.6 VFEs for different atomic fragmentations dispositions for the 250-atoms crystal with
vacancy. The result for the full system is plotted in red as reference.

In the graph, it is observed how the obtained VFEs have nothing to do with the expected
ones, which should be similar to the full system result (plotted as a red line). This result
is not surprising for the 1 fragment case (corresponding to the perfect system), in which
the support functions were determined without considering any vacancy. However, it is
remarkable that adding further fragment classes, for which the template was already run in
the default 250-atoms defect system, does not improve this result. This may be due to the
symmetry constraint implicit in the way fragments have been defined; the functions seem to
be unable to determine the position of the vacancy, as if they could not understand an atom is
missing in a given position. Therefore, this atomic fragment definition ends up suppressing
the effect of the vacancy and cannot describe the system properly.

3.4.2 Onion-alike cluster fragments

A new approach to identifying the fragment in this metallic periodic system is to consider
the atoms in the previously defined fragments as a whole. This is, understanding the whole
set of atoms within a fragment as a cluster, and aiming to find a set of support functions
that describes it all together. Now the fragments have different sizes; they may be eight, six,
twelve-atoms big... depending on the fragment (see figure 3.4). Only the last fragment, the
one in translucent pink in figure 3.4, is kept atomic and the support functions defining it will
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be the ones of the perfect crystal (the ones used to produce the 1 fragment calculation in
figure 3.6). This is also the case of the 1 fragment case.

Fig. 3.7 VFEs for different cluster fragmentations dispositions for the 250-atom crystal with
vacancy. The result for the full system is plotted in red as reference.

To start with, the 250-atom fragment case is considered. The resulting VFEs are plotted in
figure 3.7. One observes how in this case the more fragments are included, the more similar
the results of the full system and the fragment approach becomes. Having seen that this
cluster fragment succeeds at reproducing the results obtained within the full system, we try to
apply those support functions to bigger systems, i.e., we use the template support functions
of the 250-atom system for the rest of systems. The results are plotted in figure 3.8. Notice
that, since convergence in figure 3.7 seems to have been reached already for the 6 fragments
case, we will restrict the study to up to 6 fragments from now on.

These results are clearly not reasonable; one observes an unexpected rise of the VFE in
the 686-atom case. Due to time constrains, the energy of the 1024 system of neither the 5
fragment nor the 6 fragment calculations could be determined, but they are unlikely to become
better. However, one can observe an improvement in the results along the implementation
of the first fragments, which is better seen in figure 3.9, where the values bigger than 32eV
have been suppressed. In this figure, we observe a progress similar to the one observed in
the 250-atom case when considering the 1 fragment to the 3 fragment system range, also in
the 432-atom case. This shows that the energy determined for the perfect 432-atom system
through the atomic fragment approach is at least consistent with the energy in the defect
case. This tendency, however, is abruptly broken when considering more fragments. The new
values do not only get worse, but end up being comparable or even remarkably worse than
the ones obtained in the 1 fragment case, where the support functions consider no vacancy.
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Fig. 3.8 VFEs for different cluster fragmentation dispositions and system sizes. The 5
fragment values may be difficult to see, because they are almost equal to the 6 fragment ones.

Fig. 3.9 VFEs up to 32eV for different cluster fragmentation dispositions and system sizes.
The result for the full system is plotted in orange as reference. The 5 fragment values may be
difficult to see, because they are almost equal to the 6 fragment ones.
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So far, we are unable to explain this change in the behaviour of the results from the four
fragments on, but we suspect a bug in the code or en error in the set-up.

3.4.3 Two cluster fragments

To end up with, fragments have been approached from a third sight. This time only two
cluster (i.e., not atomic) fragments have been defined, and the atoms within the cells have
been split between atoms near the vacancy and atoms to be found far apart from the defect.
This is, the opaque fragments plotted in figure 3.4 have been considered together in a new
cluster fragment, called shell, as seen in figure 3.10. In this sense, for example, the 3rd shell
system considers the opaque atoms in the 3 fragment case of image 3.4b to be contained in
one only fragment, while the translucent ones are placed in an other fragment. Notice that
the 1st shell case is still the same 1-fragment arrangement from the atomic case, while the
2nd shell system coincides with the 2-fragment one defined in the cluster fragment approach.

(a) 3rd shell (b) 4th shell

Fig. 3.10 Visualisation of the two cluster shells in a 250-atom system with vacancy. Atoms
are represented by coloured spheres centred at their nuclei’s position. The ones painted in
blue are placed at the 1st fragment, while the ones in translucent pink constitute the 2nd one.

Again, we start by studying the 250-atoms cell case, the results of which are plotted in figure
3.11. We observe how these values are almost the same ones as the ones obtained along
the cluster fragment approach, plotted in figure 3.7. Having seen that this cluster fragment
also succeeds at reproducing the results obtained within the full system approach in section
3.3, we try to implement it in the bigger systems. The results are plotted in figure 3.12. As
happened in the onion-alike cluster approach due to time constrains, the energy of the 4th
to the 6th shell 1024 systems could not be determined. In this case, the plot has directly
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Fig. 3.11 VFEs for different two cluster-shell fragmentations dispositions for the 250-atom
crystal with vacancy. The result for the full system is plotted in red as reference.

Fig. 3.12 VFEs up to 32eV for different 2 cluster fragmentations dispositions for the 250-
atom crystal with vacancy. The result for the full system is plotted in red as reference.
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been restricted to energies up to 32eV , so the values obtained for the 5th and 6th shells in the
686-atom system (that gave a value of around 205eV ) are not to be found in the graph.

We observe how the results are somehow better than the ones obtained in the onion-alike
cluster fragment approach and due to time constrains, the energy of the 4th to the 6th shell
1024 systems could not be determined. , but they are unlikely to become better. but still not
satisfactory; one can still observe an unexpected behaviour from the 4th shell system on for
systems bigger than the 250-atom one. We may attribute this fact to a bug in the code or to
an error in the set-up.

3.5 Brief study of the CPU time consumption

As explained at the beginning of chapter 3, a collateral benefit of the fragment approach
is the reduction on time of the calculations. This can be seen in figures 3.13 and 3.14.
The first one shows how, in the template calculation, the CPU time slightly increases with
the number of fragments considered. However, this increase is almost insignificant. The
fragment calculation does not increase with the number of fragments considered, and is about
40% quicker than the template one. Nevertheless, the fragment calculation depends on the
previously generated support functions, for which a whole template calculation needs to be
run. Hence, this reduction on time only reduces the final time consumption if more than three
fragment calculations per template are considered.

Fig. 3.13 CPU time since initialisation of the template and fragment calculations of different
cluster fragmentation dispositions for the 250-atom crystal with vacancy.
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The second figure correlates the CPU time consumption with the system size considered.
Since in the previous image 3.13 the CPU time reminds almost constant, regardless of
the number of fragments considered, figure 3.14 plots only the time corresponding to the
1 fragment template generation (which corresponds to the full system approach to those
systems) and 1 fragment calculation (which corresponds to the implementation of the support
functions generated within the perfect 2550-atom system in the bigger arrangements). We
observe a quadratic dependency of time on the system’s size and how, so we conclude
that the systems are too small to suffer from the cubic limitation arising from the direct
diagonalisation method that optimises the density kernel. Even though the proportion between
full system and fragment approach time consumption decreases with the size, the impact of
this difference becomes grater in absolute numbers.

Fig. 3.14 CPU time since initialisation of the template and fragment calculations of different
cluster fragmentation dispositions.



Chapter 4

Conclusions and future work

4.1 Conclusions

The aim of this work was to determine with precision the formation energy of a vacancy
(VFE) in a W-crystal as a particular case of a radiation point defect. This should be a
first step towards understanding the radiation damage such a crystal may suffer in a fusion
reactor on the atomistic scale. At this scale, a fundamental description of defects requires
a computational approach such as DFT, for what the BigDFT software was implemented.
After seeing that a full system calculation is unable to describe the VFE with precision,
three different implementations of the fragment approach have been studied in an attempt
to finding out if the "convergence rate" of the different support functions produced for the
different system sizes along the full system calculation interfered in the results.

The main contribution of this work is that a fragment approach implementation in BigDFT is
able to describe a metallic crystal. Unlike in the case of molecules, the fragments along our
implementation have been generated in a periodic environment, what has also been proved
sensible. In particular, this has been proven successful for the 250-atom W-crystal system
(and its corresponding defect structure containing 249 atoms), as shown in figures 3.7 and
3.11. Furthermore, it has been seen how the results of both the onion-alike cluster fragment
and the two cluster fragment approaches tend to correlate to the full system calculation result
the more or bigger fragments were considered.

Moreover, these fragment approaches have been proven successful along the implementation
of the first fragments in bigger systems, when only the closest atoms to the vacancy were
considered different from the rest. Nevertheless, it has been observed how this pattern cracks
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suddenly at a given point, i.e., when more fragments are defined in the onion-alike cluster
case or if more atoms are included in the first shell in the two cluster fragment approach.
We may attribute this fact to some bug in the code or error in the set-up. One would have
also liked to have had a better understanding of the particular values of the 432-atom system
(detected in figure 3.5), which nevertheless have not had any more implication in the VFEs
values further than the one observed in the other systems.

A follow-up investigation would first need to explain this feature and correct any possible
error committed along the described implementation or within the code if this is the case.
One may then find out if the fragment approach is able to overcome the difference on the
"convergence rate" of the support functions of systems of different sizes, and be able to
unambiguously determine the energy formation of a vacancy in a W-crystal. Having done
this, an implementation of the fragment approach for the study of the SIA defects may also
be necessary in order to describe the whole Frenkel pair system.
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