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Abstract

The aim of this thesis is to improve the capabilities of a simpli�ed modelling
code PION, which models resonant ions in tokamak fusion reactors during 'Ion
Cyclotron Resonance Frequency' (ICRF) heating. In particular, a simpli�ed model
is investigated in order to expand the pitch-angle-averaged velocity distribution
function calculated by PION to a two-dimensional distribution function in velocity
and pitch angle.

This improvement is of interest since it will allow new comparisons with fast ion
measurements with various diagnostics for further validations of the code against
experimental data. Experimental validation is of vital importance to increase our
con�dence in our simulations of new experiments with ICRF heating both in present
devices and future devices such as ITER.
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Introduction

Preface

Not only do the huge impact fossil fuels based energies represent on the environment, but also
its �niteness in a growing society which increasingly depends on energy are the main driving
forces in the exploration of alternative and robust sources of clean energy.

Yet, fusion energy stands as one of the most promising candidates; speci�cally, when
achieved by con�ning highly heated plasma with strong magnetic �elds in a device known as
tokamak.

Fusion energy is, unlike its �ssion counterpart, virtually unlimited (since its fuel is mainly
light atoms, as hydrogen and its isotopes), safe (as it cannot occur uncontrollable chain
reactions) and the products arisen from the nuclear reactions are harmless.

Being able to reach high temperatures (∼ 106 K) is essential in order to achieve the
maximum fusion cross section; namely, the number of fusion reactions. With that intention,
many di�erent strategies have been developed to achieve such great temperatures.

This thesis deals with the heating of a fusion plasma in a tokamak using electromagnetic
waves (EM) in the range of radio frequency, close to the ion cyclotron resonance frequency.
This is also known as 'Ion Cyclotron Resonance Frequency Heating' (ICRH or ICRF heating).

More speci�cally, this work tackles theoretically and numerically the modeling of resonant
ions in tokamak plasmas during ICRF heating in terms of its corresponding distribution
function. Note that being able to compute the distribution function of resonant ions is
necessary to describe their behavior and interaction with the plasma.

Objectives and motivation

The aim of this thesis is to improve the capabilities of a simpli�ed ICRH modeling code PION[30],
which models resonant ions in tokamak fusion reactors during ICRH. In particular, a simpli�ed
model is investigated in order to expand the pitch-angle-averaged velocity distribution function
calculated by PION to a two-dimensional 2D distribution function in velocity and pitch angle.

This improvement is of interest since it will allow new comparisons with fast ion measure-
ments with various diagnostics for further validations of the code against experimental data.

Experimental validation is of vital importance to increase our con�dence in our simulations
of new experiments with ICRF heating both in present devices and future devices such as ITER.
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Speci�cally, the main guidelines with which this work is developed list as follows:

1. To provide a brief introduction of the main physical aspects of con�ned fusion and ICRH.

2. To carry out a thorough review of the most important models of ICRH resonant ions,
yielding to the 1D function in velocity that is currently being used in the PION code.

3. To present a 2D expansion of the distribution function as means of adding a
pitch dependency to the current 1D PION function, improving its capabilities.

4. To obtain some �gures and numerical results using the presented distribution
function, discussing and comparing to the experimental expected outcome.

Regarding the structure, each previous item is covered by its corresponding chapter (with
the same enumeration), while a summary of the results is given in chapter 5.
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Chapter 1

Magnetic con�nement fusion

For nuclear fusion to be a viable energy source, the output (total fusion) power must be higher
than the input power (heating power): which is a quality factor Q higher than 1, Q > 1.

In particular, the corresponding main reaction has to be exothermic. This means the
nuclear reaction delivers energy in form of kinetic energy, which is the result from the mass
di�erence between the initial nuclei (that fuse) and the �nal nucleus. This kind of processes
only occurs for elements with an atomic number below Z < 26.

So far, nuclear fusion has been mainly addressed in terms of several reactions involving
hydrogen H and its isotopes (deuterium D and tritium T ) and helium He, being of particular
importance the following reaction[1]:

D +D →

{
T (1.01 MeV) + p (3.02 MeV)
3He (0.82 MeV) + n (2.45 MeV)

(1.1)

The numbers in parenthesis stand for the kinetic energy of the end product particles
assuming that the initial nuclei have zero kinetic energy. So far the D-D reaction (1.1) has
been the main process studied and used, e.g in the Joint European Torus (JET[31]) and AUG[32]

tokamaks.
The preference for a reaction is in general justi�ed not only in terms of the amount of energy

it delivers, but also because it presents a high cross-section1. For instance, σDD ∼ 10−29 m2

for an energy around 100 keV, in the (1.1) case.

These nuclear processes clearly do not occur spontaneously in normal conditions, but
instead their energy thresholds correspond to huge amounts of ion temperature and velocity.
For instance, the peak of σDT corresponds to a temperature of 1.5·108 K. At such temperature,
matter becomes fully ionized constituting a 'gas' of free electrons and nuclei known as plasma.

Thus, in order to use nuclear fusion as a clean energy source, two main technical di�culties
have to be addressed:

� How to contain and control this 'hot' plasma.

� How to heat this plasma to achieve temperatures of T ∼ 108 K.

1It is well-known that, for nuclear processes, the higher the cross-section σ is, the more possibilities exist
for the reaction to occur.
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Magnetic con�nement fusion

The following subsections are devoted, respectively, to review some of the most important
techniques to answer these challenges.

1.1 Ion's motion and plasma con�nement device: tokamak

As mentioned above, the state of matter in which fusions occur is plasma, which can be
thought as an ionized gas that ful�ls certain conditions.

Even though this plasma can be controlled by means of other techniques (see, for instance,
inertial con�nement fusion ICF[2]), in this thesis it will be discussed the magnetic con�nement
fusion. This technique achieves the plasma con�nement by applying a magnetic �eld B.

By Lorentz force, ions and electrons spin around the magnetic �eld lines, as shown in
Figure 1.1a, being their trajectory r given by cylindrical coordinates r = z + r⊥, where:

r⊥ =
v⊥
ωc

[
cos (ωct+ φ) î+ sin (ωct+ φ) ĵ

]
, z =

(
v‖t
)
k̂

Where v‖ (v⊥) is the parallel (perpendicular) velocity to the magnetic �eld such that v⊥ =
|r⊥|ωc, φ is an arbitrary phase angle and ωc the cyclotron frequency de�ned as ωc = ZeB

Amp
.

Currently, the so-called tokamak is the most promising device for plasma magnetic con�nement
since it presents better performance than other choices, e.g. the stellarator. The tokamak is
a symmetric toroidal fusion device which is composed by an array of toroidal magnets that
produces a constant magnetic toroidal �eld Bφ inside the vacuum vessel and a central solenoid
that induces a plasma current Ip. As represented in Figure 1.1a, this current produces in turn
a poloidal magnetic �eld Bθ (forming a helical magnetic �eld line), such that Bθ � Bφ.

With this magnetic �eld shape, the plasma can be con�ned and the radial equilibrium kept.
Besides, since toroidal magnets are closer to the centre of the torus than to the outer edge,
the toroidal magnetic �eld decreases as Bφ ∝ 1

R
, being R the radial distance from the torus

axis.

Moreover, the tokamak does not present exactly circular poloidal sections, but they are
'D-shaped' (this will be clearly seen in Figures 4.3, 4.4, 4.5). This explains why toroidal
coordinates are not the only ones used to describe the physics of this device, but instead
(R,Z) for each poloidal section. As schemed in Figure 1.1a, R indicates the projection
perpendicular to the vertical axis (⊥ B) of the distance from the center of the tokamak; while
Z gives the vertical component of this distance. In this geometry, the horizontal line Z = 0
is called midplane; while the values such that R > R0, being R0 evaluated at the center of
the midplane, correspond to the so-called 'low �eld side' (LFS) of the tokamak. Contrarily,
R < R0 belong to the 'high �eld side' (HFS).
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Magnetic con�nement fusion

(a) Scheme of the tokamak geometry and the main

magnitudes associated with the ions' trajectory. This

�gure is a modi�cation of the original image presented

at page 13 of Hedin[20].

(b) Poloidal �ux surfaces in a tokamak labeled

with their corresponding value of 0 ≤ s ≤ 1, for
t ≈ 3 of shot 38017 in a experiment performed in

the AUG tokamak.

Figure 1.1: Schemes of both the geometry of a tokamak, (a), and its characteristic �ux
surfaces, (b). 5



Magnetic con�nement fusion

Furthermore, when studying ion's movement and its magnitudes, it is customary to de�ne
the so-called poloidal �ux surface label s. Actually, s is the positive square root of the
normalized poloidal �ux function ψ so, as there is a bijection between s and ψ, both magnitudes
can be treated equivalently: s↔ ψ.

The contour lines of s (or ψ), that is the set of R,Z for which s(R,Z) has a �xed certain
value, represent the '�ux surfaces' in which the pressure is constant[6] or, equivalently, have
same direction than Bθ and the poloidal magnetic �ux is the same (Figure 11.8 of Freidberg[6]

gives a clear explicit visualization). In particular, this contour lines de�ne di�erent closed lines
in the poloidal section of a tokamak, see Figure 1.1b, they are useful for the ion's modeling.
Speci�cally, s or ψ are commonly set as parameters to describe the physical domain in real
space. We will refer to a certain poloidal �ux surface unambiguously by its label s.

1.1.1 Particle orbits in a tokamak

The description of ions motion must have into account the type of orbits they can follow, as
well. There are many types of particle orbits in a tokamak. The two main types are passing
and trapped orbits as shown in Figure 1.2a.

(a) Sketch of the poloidal orbits of passing and

trapped particles. This �gure was taken from

Dini et al.[4].

(b) Sketch of the resonance layer (blue

line) during ICRH. The turning points of

the trapped ions orbits are found at R =
Rres. This Rres is such that the ICRF

waves (launched from the LFS) match their

frequency ω according to the resonance

condition (1.2) for a given cyclotron frequency

ωc(Rres) and k‖v‖ = 0.

Figure 1.2: Sketches of the possible ions orbits (a) in a tokamak and the resonance layer
(b).

The particle orbits can be characterized by the constants of particle motion, or so called
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Magnetic con�nement fusion

invariants. Such invariants include for instance, quantities proportional to the energy E =
mv2

2
and the magnetic moment µ, as seen in section 2.1.

The magnetic moment is a key quantity specially in ICRH, the heating method tackled in
this work and reviewed in section 1.2. Because of the conservation of magnetic moment µ,
in ICRH we can have much more trapped ions in tokamaks. In particular, ICRH tends to
increase the perpendicular velocity and, when doing so, the number of trapped particles
in the distribution function. These particles behave similarly to passing particles with the
exception that their poloidal orbit is not an 'ellipse' anymore, but a kind of 'banana' shaped
orbit, as shown in Figure 1.2a. More speci�cally, these kind of orbits have their turning points
along the resonance layer, that is located at a given B, located vertically in the poloidal plane
as shown with a blue line in Figure 1.2b. It is in these turning points that the parallel velocity
becomes zero and then the particles goes back traversing this banana orbit.

Thus, and as reviewed in section 1.2, ICRF heating not only increases the number of
trapped ions but also positions of the turning points of the trapped ions vanishes along the
resonance layer.

1.2 Plasma heating methods: ICRF heating (ICRH)

Plasma must achieve high temperatures so that the reactions cross-sections σ are high enough
for the processes to occur; therefore, plasma heating is necessary to carry out nuclear fusion.

Apart from just Ohmic heating, i.e. heating due to the passage of electrical current through
it, there are auxiliary heating methods to heat the plasma. For instance, the so-called neutral
beam injection (NBI) and radio-frequency (RF) heating are viable mechanisms currently used
to further increase plasma temperature.

In this thesis, NBI heating will not be discussed, instead we will address RF heating.
This method consists of launching EM waves with antennas placed inside the vacuum vessel;
then, the waves are eventually damped by ions and electrons e�ectively rising the plasma
temperature. RF heating can be used to heat electrons (ECRH), ions (ICRH), or to produce
non inductive currents in the plasma (LHCD), depending on the frequency of the wave ω (for
more details on NBI see [5], while about RF heating see [6], [7]).

1.2.1 Physics of ICRH

The ion energy absorption is strictly related to the ICRF wave electric �eld E which, in turn,
depends on their propagation in the plasma. Thus, it is a coupled problem and, in order to
model and control ion power deposition, the ICRF wave propagation must be also be taken
into account.

In particular, while the wave propagation is governed by Maxwell's equations (taking into
account the modi�cations due to the resonant ions as they are damped by wave), the plasma
is modeled according to the so-called cold plasma model[1], [23].

However, a complete analysis of this coupled problem goes much beyond the goals of this
thesis, which focuses on the characteristics of these resonant ion populations instead.
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Magnetic con�nement fusion

1.2.2 Damping mechanisms

ICRF waves can heat ions but also electrons and they can even produce non-inductive currents
to the plasma. Regarding ions power deposition alone, their wave damping is governed by a
resonance condition in their equation of motion, a�ected by E. This condition is met when
the Doppler-shifted wave frequency ω − v‖k‖ matches the ion cyclotron frequency ωc or its
harmonic n (being n = 1 the fundamental)

ω = k‖v‖ + nωc , n = 1, 2, . . . (1.2)

Where k‖ is the component of the wave number parallel to the background magnetic �eld.
Besides, even though v⊥ does not determine 'when' the damping occurs, it determines the
strength of the absorption. Concretely, the kick in energy for v⊥ that an ion experiences when
passing through a resonance region scales as[15]

∆v⊥ ∝
[
E+Jn−1

(
k⊥v⊥
ωc

)
+ E−Jn+1

(
k⊥v⊥
ωc

)]
, (1.3)

where[9] E± := 1√
2

(Ex ± iEy) is the left (right) circularly polarized wave, n is the cyclotron

harmonic and Jn is the n-th Bessel function of the �rst kind.

The analysis of wave damping is much more complex in reality. Although this work does
not tackle these aspects with detail, it is worth noting that ICRF wave frequency not only
characterize the strength of the damping, but also the position of the ion resonance and the
features of the resonant ions populations. Namely, ICRF heating tends to increase the number
of trapped particle orbits, with their tips at the ICRF resonance layer.

In particular, during ICRF heating, the energy of passing particles in the perpendicular
velocity direction is being increased until at some point these particles become trapped. The
banana shaped orbits of this trapped particles (see section 1.1) have their turning points along
the resonance layer, which is a vertical layer located at R = Rres. This resonance position
Rres is such that, for a given ωc and B, ω satis�es (1.2).

This can be seen schematically in Figure 1.2b and it will also justify the form of the Ansatz
proposed at section 3.2.1 (and the way to extend it in the ξ variable based on the conservation
of magnetic moment).

1.2.3 Minority heating

Minority heating is commonly applied for fundamental ion cyclotron resonance (whenever the
ICRF wave frequency ω equals the ion i cyclotron frequency ωci =: ωc). Such technique is
based in adding a small amount, normally a few percent, of an extra ion species j with higher
ion cyclotron frequency ωcj than the frequency ωc of the majority ion species i.

The purpose of this is to ensure ion absorption to e�ectively raise temperature of plasma.
Since the actual fraction of power absorbed depends upon the ratio of E+

E−
, the method ensures

this fraction does not vanish. In particular, it can be seen[1], [2] that according to the plasma
cold model that:

E+

E−
=
ωc − ω
ω + ωc

, (1.4)
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Magnetic con�nement fusion

which clearly implies that, for fundamental ICRF resonance ω = ωc, the wave is entirely right
polarized E+ = 0 just at the point where a left polarized wave is needed for damping.

Therefore, adding a minority ion species j (such as hydrogen H in D plasma) prevents the
numerator of (1.4) from vanishing and, thus, the wave presents the necessary left polarization.

This will be the case of the experimental data used in section 4, where H minority heating
in D plasma is addressed.
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Chapter 2

Modeling of resonant ions

With the purpose of completely characterizing resonant ions, plasma must be well de�ned
and described. It is both analytically and numerically unfeasible to solve the 3 N equations
of motion (assuming the plasma contains N ions): Fi = miai, where the force acting on the
i-th particle Fi is determined by the in�uence of all the other particles.

Instead it will be dealt on a macroscopic scale, in terms of the distribution function
f(r,v, t) which retrieves the density of particles in a time dependent-6D phase space, such
that

∫
drdvf = N .

However, we will consider the case in which the distribution function is normalized
∫
drdvf =

1, and, thus, fdrdv represents the probability for a particle to be in the volume drdv.

The behavior and evolution of this plasma as function of time is described by the Boltzmann
equation

∂f(r,v)

∂t
+ v · ∇f(r,v)− q

m
(E + v ×B) · ∂f

∂v
=
∂f

∂t

∣∣∣∣
C

, (2.1)

where q,m are the electric charge and the mass of the described ion species, respectively,
while the right hand side is a non-trivial collision operator.

Notice that the left hand side is straight-forwardly obtained by developing the f(r,v, t)
di�erential: df = ∂f

∂t
dt+∇f · dr+ ∂f

∂v
· dv = ∂f

∂t
dt+∇f · vdt+ 1

m
∂f
∂v
·Fdt; since v = dr

dt
and

dv = F
m
dt, where F is the external force �eld acting on the particles in the plasma.

Besides, while the q
m

(E + v × B) · ∂f
∂v

term can be clearly identi�ed as the 'force' term,
the v · ∇f(r,v) can be thought as a 'di�usion' term.

2.1 Evolution of the distribution function

If the force from the wave �eld, as well as the 'di�usion' term, of (2.1) are written as operators
on the distribution function, then an orbit-averaged Fokker-Planck equation can describe[17]

f .In particular, f is the solution of

∂f(r,v)

∂t
= 〈C [f(r,v)]〉+ 〈Q [f(r,v)]〉 , (2.2)

where C is the so-called collision operator and Q is the quasi-linear RF operator for wave
particle interaction. This orbit-average is de�ned as

10



Modeling of resonant ions

〈· · · 〉 =

∫ ∫ ∫
(· · · ) dθ1dθ2dθ3 , (2.3)

where θ1, θ2 and θ3 are the angles which describe respectively, and usually, the position of a
particle in the so-called Larmor rotation, the poloidal position along the guiding center orbit
and the toroidal position of the 'banana'1 center, respectively.

Reducing, by these 3 angles, the t-dependent 6D phase space leaves 3 free variables to
fully characterize the motion of a particle. These are the motion invariants, see section 1.1,
and they are usually chosen as[16]:

Ẽ =
v2

2
, Λ =

B0v
2
⊥

Bv2
≡ µB0

E
, P̃φ = Rv‖ +

q

m
ψ ,

being B0 the magnetic �eld at the axis and ψ is the poloidal �ux function and µ the magnetic
moment. With this choice of variables, the quasi-linear operator is written as[15] 〈Q(f)〉 =∑

N LN
(
DN
RFLNf

)
, where LN and the di�usion coe�cient DN

RF are:LN = ∂
∂E

+ nω0−Λω
ωE

∂
∂Λ

+ N
ω

∂
∂Pφ

,

DN
RF = 1

4ω2

∑
R

(Ze)2

|nω̇cR|
v2
⊥R

[
E+Jn−1

(
k⊥v⊥R
ωcn

)
+ E−Jn+1

(
k⊥v⊥R
ωcR

)]2

.

Where Jn−1 is the n − 1-th Bessel function, being n the harmonic number (1.2), and the
subscript R refers to a quantity evaluated at a resonance. More details on the calculation of
〈C [f ]〉 are given in [15].

2.1.1 Small orbit widths

For small orbit widths, i.e. when particles tend to stay in the same �ux surface s, an analysis of
the solution of (2.2) can be made just in terms of two variables (v, η) for a given magnetic
surface s (which will be set as �xed parameter, as the time t): these 2 variables can be the
velocity v and the cosine of the pitch-angle η :=

v‖
v
. Equivalently, it can also be done in terms

of
(
v⊥, v‖

)
. This analysis was initiated by Stix[9] and later on generalized by Anderson et al.[10]

to include ICRH heating in higher harmonics and higher order e�ects.

This situation is complicated to formalize by the fact the distribution function obtained as
solution of (2.2) consists of an almost Maxwellian low-energy bulk part plus a strongly
anisotropic energy tail for high velocities/energies. This is because the collision
frequency decreases with energy, while during intense heating the absorption preferentially
heats the ions in the perpendicular direction.

Thus, even though (v, η) are the natural variables for the collision operator, they are not
very appropriate when analyzing the high energy tail. It happens conversely to (v⊥, v‖). In

consequence, and reminding v =
√
v2
⊥ + v2

‖, η =
v‖
v
, the explicit forms of the collision and

RF-di�usion operators are given below in terms of (v, η) and (v⊥, v‖), respectively. If just

1This term refers to the shape of the orbits for a �ux surface.
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Modeling of resonant ions

the leading order for 〈Q[f ]〉 is taken, and thus dependencies on the Jn+1 term neglected, we
obtain: {

〈C[f ]〉 = − 1
v2

∂
∂v

(v2αf) + 1
2v2

∂2

∂v2
(v2βf) + 1

4v2
∂
∂η

(1− η2) ∂
∂η

(γf) ,

〈Q[f ]〉 = Kn
v⊥

∂
∂v⊥

(
v⊥J

2
n−1

(
k⊥v⊥
ωc

)
∂f
∂v⊥

)
.

where α, β, γ are the so-called Spitzer's Coulomb di�usion coe�cients[3]; Kn is a constant
proportional[10] to |E+|2.

As most of the particles can be expected to be almost isotropic (with only a small elongation
in the direction of the perpendicular velocity coordinate), a natural viewpoint from which to
solve (2.2) with the former operators, is to express f, 〈C(f)〉, 〈Q(f)〉 in the variables (v, η)
and to expand f(v, η) in terms of Legendre polynomials Pk(η), such that[10]:

f(v, η) =
∞∑
k=0

A2k(v)P2k(η) . (2.4)

It can be seen Pk are the eigenfunctions of the collisional operator with associated λn
eigenvalue, while A2k is the solution of

∂A2k

∂t
=− 1

v2

d

dv

[
αv2A2k +

1

2

d

dv

(
βv2A2k

)]
+
λ2kγ

4v2
A2k

+

∫
η
P2k(η)Q

(∑+∞
k=0 A2kP2k(η)

)
dη∫

η
P 2

2k(η)dη
.

2.1.2 Pitch-angle averaged function

Even though (2.4) is already an approximation for small orbit widths which just depends on
two variables (and s, t as parameters), its numerical computation can represent signi�cant
amounts of computing time. In order to reduce it, the one-dimensional pitch-angle-averaged
Fokker-Planck can be solved instead. That is, an equivalent (2.4) solution averaged for all the
values of η taken along a given magnetic surface s (for a certain time).

Actually, it turns out that this pitch-angle averaged distribution can describe well f through
the solution proposed by Anderson et al.[8], [10]

∂f

∂t
=

1

v2

∂

∂v

[
−αv2f +

1

2

∂

∂v

(
βv2f

)]
+

1

v2

∂

∂v

[
v2DRF

∂f

∂v

]
, (2.5)

where the �rst term on the right-hand side is the pitch-angle averaged version of the collisional
operator 〈C [f ]〉, while the second term is the wave-particle interaction RF counterpart 〈Q [f ]〉.
The di�usion coe�cient DRF is

DRF =
1

2

∫ 1

−1

Kn

∣∣∣∣Jn−1

(
k⊥v

ωc

√
1− η2

)
+

E−
E+

Jn+1

(
k⊥v

ωc

√
1− η2

)∣∣∣∣2 dη .
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Modeling of resonant ions

Keeping section 2.1.1 notation for Kn, α, β. Henceforward, this solution of (2.5) will be
written as F . According to Anderson et al.(1987)[13], when comparing isotropic moments
calculated with this model of the pitch-angle averaged distribution and the two dimensional
'BAFIC' code[11], good agreement has been found.

Despite its reasonable computing time of (2.5) and the accuracy of the approximation
of f(t, r,v) by F (v; s, t), in section 3 it is presented an extension of F (v; s, t) to a 2D f0

distribution function which recovers the pitch dependency, implicitly accounts for the poloidal
angle θ and is built directly from F .
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Chapter 3

PION modeling and extension to a 2D

FP distribution

A complete description of the plasma's resonant ions is essential to compute the power
deposition from EM waves to the ions in ICRH. Furthermore, at the same time, notice the
description of the ions must be accurate enough since the variation of ICRH parameters implies
great di�erent consequences on the distribution function[20]. Namely, the wave absorption can
provide ion and electron heating, but also non-inductive current drive, to give rise to plasma
rotation... all depending on the ICRF frequency, concentration of the resonating species or
toroidal wave spectrum, for instance.

Moreover, variations of the distribution function cause variations of the propagation of the
wave; therefore, the pro�le of deposited power will in its turn a�ect the distribution function.
Thus, it is a 'coupled' problem which requires self-consistent calculations of the wave �eld and
distribution function in order to model ICRH heating.

Currently, the ITER experiment relies on the so-called 'Integrated Modelling & Analysis
Suite' (IMAS[37]), a code framework which supports both plasma operation and its research
activities. In particular, integrated in IMAS, it can be found the PION code for ICRF heating
which, exactly, computes the EM wave power absorption in the ICRF range and the distribution
function of the ions resonant with these waves in a self-consistent way.

Henceforth, the PION code and its outputs will act as numerical data from which the 2D
extension of (2.5) distribution function F (v; s, t) is built. Below, section 3.1 is devoted to a
brief review of the PION code modeling details; while in subsection 3.2 the extension of the
current distribution function is presented and discussed using PION simulated data.

3.1 PION code modeling

Currently PION is based on simpli�ed models, which makes it 'fast' to use by an integrated
modelling framework such as IMAS. For each time step, PION �rstly computes the power
absorbed and, using this information is then calculated the distribution function, which will be
used to compute the absorption power at the beginning of the next time step.
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PION modeling and extension to a 2D FP distribution

Even though an analysis of PION code modeling is much beyond the goals of this thesis;
some additional details are provided below. For more information, see section 3 of Gallart[1].

� The power deposition model was developed by Hellsten and Villard[24] and it was partially
obtained by analyzing results from the full wave code LION[25], [26]. The power deposition
is currently computed by Fourier decomposing the launched wave in the toroidal direction
and calculating the power deposition for each toroidal mode number[24], [27].

� The distribution function corresponds to1 the solution F of expression (2.5).

� Finally, in order to make both two former computations self-consistent, PION uses a
model developed by Eriksson and Hellsten[28] for the dielectric tensor, that is the wave
propagation/interaction with plasma essentially.

Although the code is based on the former simpli�ed models, its validity has been checked
and the code used in the IMAS[30]. Speci�cally, PION has been extensively used and benchmarked
against di�erent tokamaks, such as[1]: JET[31], AUG[32], Tore Supra[33], DIII-D[34], ITER[35] and
DEMO[36].

Despite the versatility of a 1D description, whose use is mainly justi�ed in terms of low
computational times, the current distribution function does not allow to study the resonant
ions density for di�erent pitch or di�erent poloidal positions. In the following subsection, a
2D extension for the former FP distribution is presented for a more detailed description.

3.2 Extension to a 2D FP distribution

3.2.1 Theoretical justi�cation

In section 2 we discussed how the general 6D distribution function, where time is thought as
parameter, could be approximated by a 3D orbit-averaged expression for each �ux surface s we
considered, also thought as parameter. The latter was actually 2D for small-orbit widths and,
if the pitch-angle η average was considered, then the general expression could be approximated
by the 1D (2.5) solution (for each �ux surface s and time t): F (v; s, t).

However, we would like to extend the former 1D F (v; s, t) function to extend it to a 2D
phase space dependency. One approach could be followed, for instance, could be to solve
(2.4); nevertheless, in order to keep low computation times, it would be preferable to expand
the dependency by using the already determined 1D distribution.

With that purpose, we consider the leading term f0 of the distribution function f after
a standard bounce averaging procedure. A "bounce-average" over the 'bounce' or toroidal
transit motion of the particle reduces[38] the FP equation to be essentially 2D in the phase-
space for each �ux surface s (that is, considering s as a parameter).

1Actually, the solved expression is identical with a slight exception: a concrete S term in the right hand
side to take into account ICRH+NBI (Neural Beam Injection) synergy and which is especially important in
those experiments where neutral beams are in resonance with the wave[1].
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PION modeling and extension to a 2D FP distribution

This procedure is appropriate in cases where the bounce/transit time of the particles,
τb, is shorter as compared to the collision time τc, i.e. τb � τc . See, also, [40] for more
information. As remarked by Yau[38], this belongs to the current case since, not only in
the present generation of larger tokamak experimental devices often operate with most of
the plasma in this low-collisionality regime, but also non-Maxwellian particles generated by
auxiliary heating and current drive usually are in the low-collisionality regime.

The variables on which f0 depends can be chosen as (v, ξ; s, t) - being s, t parameters -,
where ξ :=

v‖0
v

is the pitch angle of a particle orbit in the outer midplane (Z = 0 in RZ

plane). It can be seen[39] ∂f0
∂θ

= 0 and, thus, f0 does not explicitly depend on θ. However,
an implicit dependence is found through ξ, since by conservation of magnetic momentum it is
held

1− η2

B(s, θ; t)
=

1− ξ2

B0(s; t)
, (3.1)

where η :=
v‖
v
is the particle pitch angle, B(s, θ; t) is the toroidal magnetic �eld (written as Bφ

in section 1) evaluated in a �ux surface s for a poloidal position θ, while B0(s; t) := B(s, 0; t)
is the same �eld evaluated at midplane θ = 0.

Actually, the conservation of magnetic moment µ, an invariant of motion for passing
particles (section 1.1), not only provides a dependency of (η, θ) through ξ but also it implies
the existence of trapped particles with banana orbits.

Moreover, it provides a clear way to expand F (v; s, t) to a 2D distribution function
f0(v, ξ; s, t) in terms of an 'Ansatz' of the form:

Ansatz =

[
exp

(
−
(
ξ − ξR(s, t)

∆ξ(v; s, t)

)2
)

+ exp

(
−
(
ξ + ξR(s, t)

∆ξ(v; s, t)

)2
)]

.

The dependencies of this Ansatz, via its exponent terms with ξ− ξR, are justi�ed by assuming
a 'rabbit ears' shape of the distribution function[29]. In particular, it is assumed that we have
trapped ions with ξ = ξR, i.e. their turning points along the resonance layer where v‖ is zero
(and thus η = 0). The width of the distribution function, ∆ξ, determines how strong this
rabbit ear shape is.

These 'rabbit ears' shape of the distribution function during ICRH were also obtained,
from simulations with bounce-averaged codes, in (E, η =

v‖
v⊥

) phase space coordinates. Thus,

as the formerly computed F (v; s, t) must be kept, and in order to mock up the 'rabbit ears'
distribution, the following expression is proposed as approximation of f0(v, ξ; s, t):

f0(v, ξ; s, t) = F (v; s, t)C(v; s, t)

[
exp

(
−
(
ξ − ξR(s, t)

∆ξ(v; s, t)

)2
)

+ exp

(
−
(
ξ + ξR(s, t)

∆ξ(v; s, t)

)2
)]

.

(3.2)
Essentially, F is extended to f0 by introducing an Ansatz such that it follows the desired
'rabbit ears' shape, shown in Figure 4.1, and a certain normalization constant C so that f0 is
consistent with F .

Furthermore, the implicit dependency of f0 on θ and η comes from the same implicit
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PION modeling and extension to a 2D FP distribution

dependence of ξ, from magnetic moment conservation. They can be related through (3.1) as

ξ(η, θ; s, t) =

√
1− (1− η2)

B0(s; t)

B(s, θ; t)
. (3.3)

In this sense, f0 depends on v, η, θ taking di�erent values when given di�erent parameters
(s, t). Below ξR,∆ξ, C are reviewed and its calculation explained.

3.2.2 ∆ξ calculation

While ξR is de�ned as stated before and directly computed by ξR(s, t) :=
√

1− B0(s;t)
B0(sR;t)

, where

sR represents the �ux label corresponding to the resonance; the value of ∆ξ must be computed
consistently with f0 so that it meets its expected shape.

Namely, on the one hand, we assume ∆ξ is such that the averaged square of the cosine
of the pitch angle η of a particle measured at the (poloidal) resonance position θ = θR, 〈η2

R〉,
can be properly computed by using (3.2) distribution function. That is, ∆ξ(v; s, t) is such
that

〈η2
R〉(v; s, t) =

∫
η2f0(v, ξ(η, θR; s, t); s, t)dη∫
f0(v, ξ(η, θR; s, t); s, t)dη

. (3.4a)

On the other hand, as rough approximation, we use the model suggested by Anderson[14]
to compute η in function of v (and s, t as parameters)

〈
η2
R

〉
(v; s, t) =

1

3

1 +
(

v
v∗(s)

)2

1 +
(

v
v∗(s,t)

)2

+
(

v
v∗(s,t)

)4 . (3.4b)

Where v∗ = vγ(s,t)

2
and vγ is the characteristic velocity associated with pitch angle scattering

[9].
This calculation of v∗ works reasonably well in the limit r

R
→ 0 (as happens in current

tokamaks), but we assume it also works for �nite r.

Therefore, and for each (v; s, t), by equating (3.4a) and (3.4b) we can numerically retrieve
the value of ∆ξ(v; s, t) such that ful�lls the equations. This problem is amenable to numerical
schemes such as Newton-Raphson's or the bisection method.

Notice that, although ξR is known, the value of C lacks for f0 to be computed and,
apparently, it would prevent carrying out the previous approach. However, since C does not
depend on η, the fraction of (3.4a) cancels out this term.
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PION modeling and extension to a 2D FP distribution

3.2.3 C calculation

Similarly to how ∆ξ(v; s, t) is de�ned, and described in subsection 3.2.2, C(v; s, t) must also
be computed so that f0 is consistent with F . Namely, it is required that

F (v; s, t) ≡ 〈f̂0〉(v; s, t) , where 〈f̂0〉(v; s, t) :=

∫ θ=π

−π
dθ

∫ η=1

−1

dηf0(v, ξ(η, θ; s, t); s, t) .

(3.5)
Here 〈f̂0〉(v; s, t) represents the pitch-angle integrated version of f0, f̂0, when integrated
along the poloidal surface, 〈f̂0〉(v; s, t).

Therefore, when F (v; s, t) 6= 0, C(v; s, t) must be such that

C(v; s, t) ≡

[∫ θ=π

−π
dθ

∫ η=1

−1

dη exp

(
−
(
ξ(η, θ; s, t)− ξR(s, t)

∆ξ(v; s, t)

)2
)

+ exp

(
−
(
ξ(η, θ; s, t) + ξR(s, t)

∆ξ(v; s, t)

)2
)]−1

(3.6)

Note that, unlike the pitch-angle averaged 1D function F (v; s, t), f0 allows the de�nition
of the poloidal resonant ion density n0(s, θ; t) as

n0(s, θ; t) :=

∫ η=1

−1

dη

∫ v=+∞

0

dv v2f0(v, ξ(η, θ; s, t); s, t) . (3.7)

If (3.5) holds, then resonant ion densities n(s; t) and 〈n0〉(s; t), computed using F and f0

respectively, are clearly identical since

〈n0〉(s; t) :=

∫ θ=π

−π
dθ n0(s, θ; t) . (3.8)

3.3 Numerical implementation

With the purpose of compute the 2D distribution function f0(v, ξ, s, t), as well as to visualize
the results, some routines were created addressing the following points:

� To import all the needed experimental data and the PION data. For instance, on the one

hand ξR was computed by de�nition ξR(s, t) :=
√

1− B0(s)
B0(sR)

using the toroidal magnetic

�eld B0(s; t) := B(s, 0; t) from experimental data. On the other hand, F (v; s, t) was
imported from the PION data.

� To numerically solve ∆ξ (through bisection method) equating (3.4a) and (3.4b). The

values of v∗(s) were obtained as v∗(s) = 1
2
vγ, being vγ =

√
2Ecrit

me
the characteristic

velocity evaluated from the so-called critical energy[18], [19] Ecrit.

� To numerically compute C as indicated by equation (3.6). The numerical integration
was numerically carried out with a trapezoidal scheme, using the former values ξR and
∆ξ.

� To numerically integrate f0 in function of η, so that all identical ions but with di�erent
pitch angle compute equally for some representations, and leave it as a function of θ
(and v, s, t).
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Numerical results

� To visualize the �ux surfaces for di�erent s (Figure 1.1b).

� To visualize both the Ansatz and f0 in (R,Z) plane (Figures 4.3, 4.4, 4.5), but also in
(E, η) plane for the Ansatz (Figure 4.1).

� To visualize other quantities, such as ξ as function of θ (Figure 4.2).
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Chapter 4

Numerical results

This chapter is devoted to review of the 2D distribution function f0 proposed in terms of the
obtained numerical results and plots.

In particular, a pureD plasma with 5% of hydrogenH minority is studied, modeling through
f0 the resonant ions of this hydrogen minority. Furthermore, the data used corresponds to the
AUG experiment with '38017' as shot number, with 4 antennas emitting 36.5 MHz frequency
waves and with an input power around ∼ 3.5 MW, and a toroidal magnetic �eld Bφ whose
values ranged from ≈ 1.90 T to 3.96 T depending on s, t, θ. The system will be studied at
the time slice t = 2.5 s.

Speci�cally, the PION code was �rstly run with the default ICRH settings, that is keeping
the above frequency and power, and the plots associated to it are presented and discussed
below. Afterwards, in sections 4.1 and 4.2, the power and frequency are respectively modi�ed
in order to compare the results with the expected outcome.

In order to treat PION data and to numerically expand F (v; s, t) to the 2D distribution
function f0(v, ξ, s, t), as well as to visualize the results, some Python codes were created and
ran. More speci�cally, the developed routines addressed all the points listed at section ??.

First of all, as validity check of the proposed 2D distribution, Figure 4.1 is presented.
Furthermore, Figure 4.1 clearly displayed the desired feature of 'rabbit ears' shape that our
Ansatz(η, θ; s, t) must possess in (E, η) plane.

Note the closer to midplane θ = 0, left subplot, the brighter and more separate these 'ears'
are. Heuristically, this experimental phenomenon is well described by the proposed Ansatz
because of the behavior of ξ, shown in Figure 4.2.

Speci�cally, comparing the abscissa E = 500 keV of the left subplot of Figure 4.1
(associated to values s = 0.25 and θ = 0, whence η(θ = 0) = ξ), with the abscissa
θ = 0 of the middle subplot of Figure 4.2 (associated to s = 0.3, E = 500 keV); then
we can explain the local maximums that 'rabbit ears present'. Namely, it is easy to observe
that for such abscissas, when η is close to 0.2 then it cuts ξR. Thus, one of the Ansatz

exponents cancels out, becoming Ansatz(v, ξ; s, t) = 1 + exp

(
−
(
ξ+ξR
∆ξ

)2
)

a local maximum

and, thus, appearing a 'rabbit ear' in η ≈ 0.2. This is exactly what observed in Figure 4.1: for
E = 500 keV and θ = 0 the brighter value of the Ansatz is for η ≈ 0.2 (and analogously for
its negative counterpart).
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Numerical results

Figure 4.1: Plots of the Ansatz in the (η, E) space for di�erent values of θ when (s, t)
have �xed values of (s, t) = (0.25, 2.5 s). Note the mocked 'rabbit-ears' shape appears clearly,
specially for 'central' values of θ.

Figure 4.2: Plots of the midplane pitch-angle ξ as function of the poloidal angle θ (normalized
with respect to π) for several values of s and �xed energy E = 350 keV. The dashed-dotted
line represents the value of ξR(s; t) (for t = 2.5 s as the rest of cases).

On the other hand, even though is not shown in this work, f0 was con�rmed to be consistent
with F . Speci�cally, the total minority density (3.8) was computed for di�erent �ux surfaces
s and compared to the total ion density, which is correctly modeled with an error bar of 20%.
Then, the ratio between them was around a 5%, the same result than using F to �nd this
minority density ratio. Both results agrees with what is expected because the H ions constitute

21



Numerical results

around a 5% of the total ions in this shot to achieve minority heating (see 1.2.3).

Moreover, note that, since neither F nor C depends on θ, the variation on the poloidal
angle of f0 will be due to the Ansatz(v, η, θ; s, t). In Figure 4.3, the 2D proposed distribution
function f0 is represented in (R,Z) coordinates to account for these di�erences, and it is
displayed integrated along the pitch angle η. The integral on η is carried out so that ions
with same energy but di�erent velocity direction, and so pitch-angle, contribute equally to the
representation.

Figure 4.3: Plots of the 2D distribution function f0, integrated along the pitch-angle η, in
(R,Z) coordinates for di�erent energies.

Let us note Figure 4.3 proves the heuristic intuition of what kind of distribution follow
ICRH resonant ions: an almost homogeneous distribution of (thermal-energy) ions for low
energy with an anisotropic tail for high energies. Moreover, the homogeneous contribution
for low energies corresponding to a 'central spot' in purple, vanishes while energy increases
(in the lowest energy E = 100 keV left subplot is clearly visible, whilst in the highest energy
E u 620 keV right subplot is nonexistent).

We can also see that, the anisotropic distribution for high energies corresponds to a set
of 'trapped particles' in the form of a 'banana orbit' in the low �eld side (for R > R0, being
R0 the R coordinate at the center of the midplane). Yet, the more energetic ions are, then
the more anisotropic their distribution is, for this 'banana orbit' becomes clearer and more
narrow. For E ≈ 600 keV, right subplot of Figure 4.3, the orbit of trapped ions resembles
a vertical line which is centered at the so-called resonance position and whose �ux surface is
labeled by sR. Moreover, the ions seem to gather specially at the tips of these 'banana' orbits,
speci�cally while the energy is increased.

In view of the already great agreement of f0, and in order to further check its validity, in
subsections 4.1 and 4.2 the PION code is re-run with di�erent input parameters.
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Numerical results

4.1 Changing ICRH power

This section is devoted to the analysis of ICRH resonant ions distribution when the ICRH
power has been modi�ed. Speci�cally, while Figure 4.4a corresponds to the PION run with an
increase of 300% of the section 4 ICRH power, Figure 4.4b is associated with a decrease until
the 40% of the default setting.

(a) 300%

(b) 40%

Figure 4.4: Plots of the 2D distribution function f0, integrated along the pitch-angle η,
in (R,Z) coordinates for di�erent power (the percentage compares the power value with the
default one).
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Numerical results

The e�ects of modifying ICRH power could be summarized as:

� ICRH with higher input power implies a higher average energy, as well as the fact more
ions will be damped and become trapped, while it implies the contrary for lower power.

� Besides, the anisotropic e�ects of the high energy tail seem to be accentuated (dimmed)
if the supplied power is increased (decreased). Actually, for same energy E = 100 keV,
Figure 4.4b seems to resemble a thermal energy distribution that is much more homogeneous
than 4.4a.

4.2 Changing ICRH resonance position

Similarly to section 4.2, this is devoted to the analysis of ICRH resonant ions when the
resonance position is altered. In order to modify the resonance location, the wave frequency
of the tokamak antennas must be changed.

The cyclotron frequency - or gyrofrequency - f is given by f =
qi

2πmi

B where qi,mi are

the charge and mass of the ion species i and B the toroidal magnetic �eld. Besides, the
toroidal magnetic �eld in the midplane B0(s) = B(θ = 0, s) veri�es B0 ∝ 1

R
∝∼

1
s
and, thus, it

is held f ∝ B ∝ B0 ∝ 1
R
. Namely, an increase of frequency means the resonance is displaced

to the 'left', that is, closer to the high �eld side HFS.

The e�ects of modifying ICRH frequency are shown through Figures 4.5a and 4.5b, in
which frequency has been respectively set to 40 MHz and 33 MHz (in comparison to the
36.5 MHz of the default run). The consequences of these variations could be summarized as:

� ICRH with higher (lower) frequency implies a left (right) shift, towards the HFS (LFS),
of the resonance position, as expected. However, it should be said the resonance position
was expected to be more in the HFS than actually it is.

� While for higher frequency the anisotropic e�ects of the high energy tail seem to dim,
they appear easier for lower frequency. Also, the width of this 'banana' shape orbit and
the concentration of trapped ions in the tips of these orbits seem to increase.
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Numerical results

(a) f = 40MHz

(b) f = 33MHz

Figure 4.5: Plots of the 2D distribution function f0, integrated along the pitch-angle η, in
(R,Z) coordinates for di�erent energies when ICRH frequency is modi�ed.
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Chapter 5

Conclusions

Throughout this work, we have analytically and numerically studied fast ion populations during
ICRH, specially emphasizing its description in terms of distribution function and, in particular,
extending a 1D description F (v; s, t) to a 2D description f0(v, ξ; s, t).

In particular, a �rst brief presentation of the basics of con�ned fusion and ICRH was given
in chapter 1. Also, the role of ICRF waves to e�ectively raise plasma temperature was justi�ed
and its consequences on the ion distribution presented. Moreover, it was highlighted the
necessity of introducing a minority concentration of hydrogen H in single ion species plasmas,
as well as the importance of an accurate distribution function to describe these resonant ions.

Afterwards, a thorough review of the most common distribution functions for ICRH resonant
ions was carried out in chapter 2. There, both the heuristic conception and the theoretical
description of these ions were given. Speci�cally, it was seen ions qualitatively behave as
Maxwellian (thermal-energy) particles for low velocities, but with a strongly anisotropic energy
tail for high velocities and energies. Besides, it was also presented the 1D pitch-angle averaged
distribution function F that is currently being used in the PION code.

Then, a 2D extension of the resonant ions distribution function f0 was analytically reviewed
in chapter 3.

At last, a numerical study was carried out in chapter 4 using experimental data from an
AUG ICRH experiment and with numerical results from PION. The proposed 2D extension f0

was initially tested applying 36.5 MHz and ∼ 3.5 MW ICRF waves to a pure D plasma with
5% H minority. Finally, the ICRF wave frequency and ICRF input power were varied to study
the dependence of the resonant ions distribution on these key parameters.

The proposed distribution f0 found good agreement with the expected results, and in
particular, it was consistent with 1D function F . Thus, this suggested distribution is an
e�ective means of adding a pitch (and poloidal) dependency to the current PION description
of plasma resonant ions, improving its capabilities as it was desired.

This improvement is of interest since it will allow new comparisons with fast ion measurements
with various diagnostics for further validations of the code against experimental data. Experimental
validation is of vital importance to increase our con�dence in our simulations of new experiments
with ICRF heating both in present devices and future devices such as ITER.
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