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Abstract

The analysis of electromagnetic (EM) wave propagation in an inhomogeneous and magnetically
confined plasma is a relevant topic in nuclear fusion, especially for ion and electron heating. In
order to understand whether an EM wave is able to heat ions and/or electrons, the accessibility
of the wave needs to be assessed. In this thesis, the MAXWEL code has been developed, a
finite element code to simulate the EM wave propagation in an anisotropic confined plasma.
In particular, MAXWEL computes the EM fields in a bi-dimensional geometry, solving the
Helmholtz equation in the frequency domain. The solver has been equipped with linear and
quadratic elements and dense meshes to optimally model the studied domains with good
computational efficiency. A number of different dielectric media and computational domains,
including that of a tokamak, have been modelled and benchmarked to show the reliability
and robustness of the code. A first approach to model a plasma by means of the cold
plasma permittivity tensor has also been attempted yielding excellent agreement with the well-
established EM code ERMES. Several plasma scenarios and relevant cutoffs in tokamaks, such
as the R and L cutoffs, have been analysed, providing good agreement with theoretical models.
Future work will be carried out in order to include a hot permittivity tensor to account for
wave and wave-particle resonances. This code represents another step towards a full reactor
integrated modelling effort using the high-performance computing framework ALYA.
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Chapter 1

Introduction

Energy production is one of the main pillars for the thrive of humankind. Throughout history,
humans have developed ingenious methods to produce, gather, and store energy; which alto-
gether resulted in a high impact on our day-to-day lives. In the current scenario of climate
crisis, we are being pushed to seek new energy sources. Some of these green alternatives are
already well known by the general public, such as the wide spectrum of renewable energies —
solar, wind, hydraulic... — or nuclear energy. Despite being a great alternative to fossil fuels,
these solutions still present some disadvantages. To mention a few, renewable energy is highly
dependent on weather, presents serious geographic limitations and its power output and the
power consumption from the grid are generally unmatched (see fig. 1.1). On the other hand,
long-term radioactive waste production and the catastrophic potential accidents for nuclear
fission make some collectives reluctant to this technology.

Power grid data from California on 31/05/2023
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Figure 1.1: Duck curve of power consumption in California and the power generation from
solar and wind. The different scales in the y axis help visualise the maximum
generation at minimum demand. Data obtained from CAISO [I].

For some of these reasons nuclear fusion energy has been proposed as a strong candidate
for a clean and robust energy source. In fact, 140 kg would produce as much energy as 800 kg
of uranium and is also equivalent to 10° t of crude oil [2]. The difference between conventional
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6 1. Introduction

nuclear fission and fusion is quite drastic. Both share that the energy production mechanism
is brought up by nuclear reactions in its fuel, but while nuclear fission is based on splitting the
atom of a heavy element, such as uranium, in lighter species; nuclear fusion aims to combine
two lightweight nuclei to produce high amounts of energy. For those curious, a more in-depth
insight into nuclear fusion is provided in the following section.

1.1 Nuclear Fusion

Thermonuclear reactions are based on the combination of two nuclei of light-weight atoms;
which after fusion, the product mass is smaller than the direct sum of its precursors. According
to Einstein's famous formula £ = mc?, the energy gain of the reaction, is defined as

AE = (mj —m;)c? (1.1)

The energy in eq. (1.1), coming from the mass defect between products and results, is equal
to the binding energy of the nucleons. Figure 1.2 depicts useful information regarding not only
the physics of fission and fusion energy but also stellar evolution physics. To the left of Fe®,
we have light-weight elements. As a rule of thumb, the lighter the element, the bigger the
energy produced by fusing. These reactions happen naturally within stellar cores, generating
the necessary energy to prevent their gravitational collapse. Massive stars undergo fusion,
producing heavier elements until they reach iron. At that point, they cannot produce energy
anymore and the outer shells collapse into the nucleus. On the same figure, at the right side
of Fe®®, we have heavier elements. By fissioning elements such as uranium, lighter elements
are produced releasing energy. This is the working principle of fission reactors, which operates
with the right-most elements of fig. 1.2.

3 H3
He?

Average binding energy per nucleon (MeV)
SN

1[pH?

Hl
0 30 60 90 120 150 180 210 240 270
Number of nucleons in nucleus

Figure 1.2: Average binding energy of elements. Fe®® acts as a limit to exothermic reaction.

There are plenty of nuclear exothermic reactions (AE > 0, fig. 1.3a), but their reaction
rate, which is proportional to the cross-section o(v) (fig. 1.3b), depends substantially on the
temperature of the reactants. To this date, the preferred reaction is fusing deuterium (D)
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and tritium (T) eq. (1.2), exclusively due to having the cross-section maximum at the lowest
temperature. Some alternatives present certain advantages, such as aneutronic reactions or
the use of non-radioactive products such as tritium, but we are still limited by the current
technology for that to be achievable. Having aneutronic fusion would avoid the activation
of the reactor wall — and hence the use of high-activation materials such as tungsten —
and avoiding radioactive fuel such as tritium (half-life of 12.32 years) would suppose bigger
reservoirs and no need for breeding process inside the reactor.

*D + 3T — 5He (3.5MeV) 4+ n (14.1 MeV) (1.2)

T [million K]
15 150 1500 5000
\ \

D+T— a+n+17.6 MeV
D+D — *He+n+ 3.27MeV
D+D — T +p+ 14.05 MeV
D +3He — a +p + 18.34 MeV
D+ °Li — 200+ 22.4MeV
D+ Li— 20+ 17.2MeV

D + %Li — a + *He + 4.0 MeV

D+ "Be —s 3a + 8.7MeV 10 S 100 1000

(b) Cross-section for some of the reactions. Data

(a) Examples of nuclear fusion reactions [3)]. extracted from [4, 5].

Figure 1.3: Some reactions present different advantages, but the easiest to achieve is D + T.

1.2 Plasma description

As seen in fig. 1.3b, the range of temperatures to achieve a high cross-section for D-T fusion
is of the order of 1.5 x 108 K (equivalent to ~ 10keV). At such temperatures, the hydrogen
isotopes become fully ionised, releasing their electrons separately from their nuclei. This state
of free-charged gas is known as plasma. Plasma is the most abundant state of matter in
the universe, not only the Sun and lightning are examples of plasma, but also the interstellar
medium, neon lights, and auroras. A proposed definition for plasma extracted from [6] reads
as follow:

A plasma is a quasi-neutral gas of charged and neutral particles which exhibits
collective behaviour.

However, there are a set of requirements that need to be fulfilled to present this collective
behaviour, and hence, for an ionised gas to be rigorously considered as plasma. These require-
ments involve a well-known set of natural parameters (Ap., wye and Ap) that have to fulfil a
series of conditions. The Debye length (\p.) could be expressed in words, as the length scale
at which quasi-neutrality of the plasma does not necessarily hold, or the length at which a DC
perturbation is screened. On the other hand, the plasma frequency (wy.), could also be un-
derstood as the oscillation frequency experienced by electrons under a harmonic perturbation
in the charge distribution. Similarly, it can be defined also for the ionic species w,;. Finally,



3 1. Introduction

the plasma parameter Ap simply accounts for the number of particles in a sphere of dimension
Ape- The mathematical definitions and constraints are the following [2]:

EOTe
ADe = 2 << L (1.3a)
ne’ >> (1.3b)
Wpe = w .
P E0Me Te
4 3
Ap = gW”eADe >>1 (1.3c)

Equation (1.3a) is telling that the characteristic length of the system (L) has to be much larger
than \p., in order to shield any static perturbation. Equation (1.3b) represents that the rate of
thermal collisions between electrons (wr, ) is much smaller than the electron plasma frequency,
allowing screening any harmonic perturbation. The third condition, eq. (1.3c), would tell that
for an accurate statistical fluid description of the plasma, we would need a great number of
particles in a volume smaller than a Debye's length sphere. If these conditions are fulfilled, then
the ionised gas is dominated by long-range collective effects instead of collisionality effects.

In this thesis, we consider one particular type of plasma, which is called cold plasma. This
approximation assumes that there are virtually no thermal collisions between particles. In
some of the simulations done with MAXWEL, we have used this model and its derivations, to
observe how an electromagnetic wave would propagate under this type of medium. Plasmas
found in fusion reactors, that is hot plasmas, are nowhere close to this approximation, but
still, cold plasma gives good insight into wave propagation and accessibility in a wide range of
scenarios. The cold plasma model will be later detailed in section 2.1.

1.3 Magpnetically confined fusion

As we have seen in fig. 1.3, we need to heat the reactants (deuterium and tritium) to extremely
high temperatures, of the order of million Kelvin. Furthermore, we need to be able to confine
the plasma in a limited region, to prevent the hot material from touching the reactor walls
and to improve the heating efficiency. Without a combination of high enough temperature,
density, and long enough confinement, nuclear fusion becomes unreachable. Such a condition
is known as the Lawson criterion, and expresses the minimum threshold to achieve ignition, in
terms of temperature T, density n, and confinement time 7.

ntgT > 3.5 x 10* keVsm™ (1.4)

Ignition is the scenario in which fusion becomes self-sustained and there is no need to inject
energy to heat the plasma. This concept might be impossible to replicate on Earth, or at
least it is being extremely difficult. Plasma presents magnetohydrodynamic instabilities that
prevent this ignition condition from happening. Lots of research is being done to minimize
these instabilities from different approaches. However, it is not necessary to reach ignition
to achieve an energy gain factor bigger than one, which would allow us to extract energy
from a fusion reaction. Many methods and technologies are being developed to produce
such reactions, but they can be differentiated into two main branches. One would be inertial
confinement, where they use laser pulses to heat up and compress the fuel pellets to trigger
fusion reactions. On the other hand, magnetic confinement consists of using magnetic fields,
usually in toroidal-like devices, to confine the plasma fuel within.
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Since the early stages of magnetic fusion confinement, there have been many proposed reactors
and machines that have been tested and studied. However, the ones that lead to the most
promising results are tokamaks and stellarators (fig. 1.4). Both present a toroidal shape,
whereas a tokamak resembles a standard torus while stellarators present a twisted shape and
consequently, they are not axisymmetric. However, new stellarators are being tested that
rely on 2D-printed coils on the surface of the torus. This allows the machine itself to be
axisymmetric, despite the plasma shape configuration remaining the same. This technology
is under investigation by the company Renaissance Fusion [7]. Tokamaks induce a toroidal
plasma current by means of the central solenoid, while stellarators use their helical geometry
to stabilise the plasma.

inner poloidal magnetic field coil

coil current outer poloidal

" ) toroidal magnetic field coil
magnetic field coils 9

helical magnetic field coil

vacuum vessel

plasma vacuum vessel

toroidal magnetic field twisted magnetic field
poloidal magnetic field

twisted magnetic field

plasma current

(a) Tokamak (b) Stellarator

Figure 1.4: Schematic concepts of tokamaks and stellarators. Images extracted from [8].

1.3.1 Plasma heating

Indistinctly of which reactor is used, plasma heating is one of the fundamental topics to be
addressed to achieve an energy gain factor () > 1. Several approaches are being implemented;
however, we will mention only the following three due to their major relevance. Each one
of these three presents different regions of efficiencies, advantages, and difficulties. The first
method is known as ohmic heating, in which the kinetic energy of electrons is transferred by
elastic collisions to the different species within the plasma. Ohmic heating is logically more
dominant in tokamaks than stellarators since the former operates with large toroidal currents.
However, ohmic heating becomes less effective at higher temperatures. To overcome this
issue, there are alternative methods such as microwave heating and Neutral Beam Injection
(NBI). NBI consists of injecting neutral particles which are not affected by the magnetic fields
within the reactor. This allows those particles to reach deeper into the plasma, allowing them
to transfer kinetic energy and momentum.

Finally, lon and Electron Cyclotron Resonance Heating (ICRH, ECRH) are both two com-
plementary methods to heat the plasma using microwave radiation. For this method, some
antennas present on the wall of the reactor — as can be seen in fig. 1.5 — inject electromag-
netic pulses with such frequency that resonates with the cyclotron frequencies of electrons or
ions, transferring energy from the wave to their kinetic energy perpendicular to the magnetic
field. Consequently, these electromagnetic waves will travel across the plasma interacting with
Its species.
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Simulating these waves would allow to better understand and test, really cost-efficiently, dif-
ferent configurations of ICRH and ECRH in working plasma conditions. MAXWEL module
tries to fill this gap in the computational plasma physics domain, by using the Finite Element
Method (FEM) to solve numerically a propagating wave equation. The main idea is to have a
code that is agnostic to geometry, tokamak or stellarator, to plasma position, core or scrape-off
layer (SOL), and to range of frequencies, ICRH or ECRH, as opposed to most of the codes
available in the community, as [9, 10, 11] to cite a few. Furthermore, with the added value
that the module will be integrated into a suite of codes for integrated modelling within the
ALYA framework. For now, the software is limited to a poloidal cross-section of a tokamak,
considering an invariant geometry across the toroidal direction. Further details of the process
will be given in chapters 2 and 3.

o

(a) ICRH of WEST tokamak. (b) ICRH of stellarator Wendelstein 7-X.

Figure 1.5: Example of ICRH antennas. Images extracted from [12, 13] respectively.

Plasma heating, in particular ICRH and NBI, was one of the key aspects to achieving the
present fusion energy world record reached at the Joint European Torus (JET) during the
second and third deuterium-tritium campaigns (DTE2 and DTE3) in 2021 and 2023. Many
recent studies based on plasma heating were carried out to prepare for these experiments which
served as a guideline towards this success, e.g. [14, 15, 16, 17, 18, 19, 20].

1.4 Numerical Modelling

Numerical modeling is a broad multidisciplinary field, in which computational resources are
used as a tool to simulate mathematical or theoretical models. It combines many aspects
of computer science, mathematics, engineering, and physics. Numerical methods have the
advantage of being independent of the problem or geometry of the domain, compared to
analytical derivations, whose solutions are usually limited to a set of functions that can change
depending on the domain and geometry. Consequently, numerical methods can be applied to
numerous types of problems, of varied physics and applied to different geometries. This allows
us to access a framework of virtual simulations in order to reproduce and experiment with the
physical paradigm of our interest.

In this work, we will use this powerful tool to simulate the wave propagation in a 2D cross-
section of a tokamak, with different considerations and configurations. This task serves its
purpose as a first step towards a complete simulation of microwave heating, in which electro-
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magnetic pulses are sent from the antennas to heat the plasma, as explained in section 1.3.1.
So we will focus on solving partial differential equations derived from Maxwell's laws to sim-
ulate and compute the electromagnetic fields within the torus. To do this, we will use the
Finite Element Method (FEM). In the initial stages of the project, we used Dr. Ozgiin and
Dr. Kuzuoglu's textbook [21] as a reference and inspiration, so the reader may find some
similarities in the notation and theoretical framework. For a more comprehensive description
of the numerical methods used and simulated scenarios, we recommend [22].

1.5 Alya and Marenostrum 5

This work was carried out as a student member of the Fusion group at the Barcelona Super-
computing Center (BSC). BSC is a Spanish Severo Ochoa Center of Excellence, the founding
member of the Partnership of Advance Computing in Europe (PRACE), and also the Span-
ish National Supercomputing Center (Centro Nacional de Supercomputacién - CNS). The
Fusion group is hosted in the Computer Applications for Science and Engineering (CASE)
department, which is staffed by a highly multidisciplinary team with around 100 researchers
of different backgrounds (physicists, engineers, mathematicians, computer scientists, techni-
cians, etc.) working together. The Fusion Group at CASE is focused on the research in
nuclear fusion which aims to develop fusion as a safe, clean, and virtually limitless energy
source for future generations. The CASE department has been involved in the field of nuclear
fusion research since 2008 when BSC-CNS joined as one of the fourteen partners in the EU-
funded project EUFORIA (EU fusion for ITER Applications) to provide the infrastructure that
links high-performance computing (HPC) to the fusion modelling community for ITER sized
plasmas. Several members of the Fusion Group have led and coordinated many international
experiments and modelling tasks such as in JET or AUG.

The BSC CASE department, since its birth in 2004, has developed a software program called
Alya [23, 24]. Alya is more than a Finite Element Method (FEM) code; it is a development
framework on which different physics are implemented according to the interest of the devel-
oper. Alya uses a single main numerical tool, finite elements, although over the years numerous
alternative techniques have been included to optimise its answer depending on the physics to
be solved. Alya provides the parallelism tools in an integrated and transparent way to the
specific developer. Needless to say, Alya was designed from the very first line of code, to get
the best possible performance on a supercomputer. That is why efficiencies close to 100% are
obtained even when running problems on 100,000 processors [24].

@ @ A O A ah A

| TEMPER | | SOLIDZ | | NASTIN w\ NEUTRO | | MAGNET ||| MAXWEL | | MHDNOL | | EQUILI |

N AN ANV AN /\/\/\/\/

Figure 1.6: In blue, modules originally developed by CASE. In green, modules developed ex-
clusively by the Fusion Group. In red, modules being currently under development.

Alya’s kernel has a mesh partitioning system, the 10, a huge number of linear systems and
eigenvalue solvers, and an extensive finite element library, its main numerical tool. The specific
modules are mounted on this kernel to solve the different problems of interest. Currently,
there are modules to solve thermal problems, incompressible fluids, turbulence, mechanical
problems, combustion, neutronics, and magnetism, among others. The long-term goal within
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the Fusion group is to develop a group of modules that will be added entirely to Alya to
account for different problems that occur within confined plasma, and its interaction with the
walls and components of the reactor that contains it. In this sense, some modules already
created in Alya need to be adapted to work with this problem. There are currently modules to
simulate thermal hydraulics and thermal mechanics (TERMAL, SOLIDZ, NASTIN), a module
to describe neutron transport (NEUTRO) [25, 26] and another to describe magnetic behaviour
in superconductors (MAGNET) [27]. In the same way that those modules were built, we have
the intention to create new modules: one for plasma equilibrium (EQUILI) [28], one to analyse
the electromagnetic response of the plasma and the structure (MAXWEL), and another to
describe linear and nonlinear magnetohydrodynamics to study problems as breeding blanket and
plasma disruptions (MHDNOL) — see fig. 1.6 —. In this way, Alya would possess the required
plasma physics, based on the same language, the same IO, the same numerical technology, and
the natural communication proposed by the KERNEL. As an added advantage, this software
will have Alya's high computational efficiency and continuous support for the kernel operation
on different architectures.



Chapter 2

Electromagnetic theory

In this chapter we will present the electromagnetic formulation and derivation of the differential
equations of interest, to be solved by the FEM method. To do so, we will part from the well-
known Maxwell equations.

V x E(r,t) = —9,B (r,1) (2.1)
Vx?—t(r,t)zj('r t) + 0,D (r,t) (2.2)
D(r,t)=p(r,t) (2.3)
B(rt) = (2.4)

Where D [C/m?| is the electric displacement field, £ [V/m] is the electric field, H [A/m] is
the magnetic field intensity, B[T] is the magnetic flux density, p [C/m?] is the electric charge
density and J [A/m?] is the current density. Considering a linear relation between D and &
and between B and H, we can express these relations in the frequency domain such as:

D(r,w)=¢(r,w) - E(r,w) (2.5)
B(r,w)=p(r,w) - H(r,w) (2.6)

Where e [F/m] and p [H/m] are the complex permittivity and permeability tensors. For this
work, we have considered monochromatic and time-harmonic waves, so we can extract fre-
quency dependence in fields from egs. (2.1) to (2.6), by taking out the time phase ™.
Consequently, now Maxwell's equations look like

VX E(r)=—iwpH (r) (2.7)
VxH(r)=J(r)+iveE (1) (2.8)
V-E(r)=¢"'p(r) (2.9)
V- H(r)=0 (2.10)

Now we have two sets of coupled equations, from which we can extract a constitutive relation
for H and E. Applying the curl to eq. (2.7), and substituting the right-hand term by eq. (2.8),
we obtain the following expression:

Vx(p' - VXxE)-uwe E=—iwd (2.11)

13
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and doing the same process but in the opposite order, we reach the following equation
Vx (e VxH)—wp- H=Vx(eg"J) (2.12)

It has to be considered that J has two different components; J, originated by externally

input currents or sources, and J;,q, from the induced current due to non-zero conductivity.

According to Ohm's law Ji,q = o - E. Now Ampere's law eq. (2.8) is presented as
VxH=J,+0 E+iwveye,  E

, (2.13)
=J, + iwepe. - E

with €,. = €, + ZwLEO It has to be noted that &, is strictly a real tensor and €,. € C. As an
abuse of notation, when a permittivity tensor presents complex values, we might note it as €,
although it inherently refers to g,..

Consequently egs. (2.11) and (2.12) now look like
Vx(pu 'V xE)—kie. E=—ikmnods (2.14)
Vx(e) VxH)—kip, -H=Vx () J,) (2.15)

rc

with ko = wy/Zofto and 19 = , /£2. Both egs. (2.14) and (2.15) represent a 3D vector wave

equation. However, we have considered an invariant geometry across a given direction, in this
case, the z axis; and, if the current density J does not depend on z, it would be enough
condition to reduce egs. (2.14) and (2.15) to a 2D case. But doing a further simplification,
we have considered a source-free medium (Js = 0) and electric and magnetic fields have been
decomposed into two fundamental polarisations, transverse magnetic (TM) and transverse
electric (TE), giving place to the following Helmholtz equations.

V- (Ay VE,) +kje..E, =0 (2.16)
V- (Ae-VH,) +kp..H, =0 (2.17)

Where eq. (2.16) describes a TM wave (H,, H, # 0 = E, # 0) and eq. (2.17) corresponds
to a TE wave (E,, E, # 0 = H, # 0). In these equations, parameters are defined as

T

L= (HT)?b and As: (€TC)§?b (218)
| (1) sup | | (&re)sup |
where
€qx Ex 0 0
! (87‘C>sub
Erc = Exy Eyy 0 = 0 (2193)
0 0 e, 0 0 e,
Moz Hay O 0
(:u?“)sub
B = | by tyy 0 | = 0 (2.19b)

To be able to compute either H, or E, fields, they will be decomposed using the scattered
field formulation. For example, H, = H;“C + H5 where “inc” refers to the incident wave
and “scat” to the scattered field. Consequently, egs. (2.16) and (2.17) can be re-written as:

—V - (A, VEX) — kje . EX* =V - (A, - VEX) + kje.. B (2.20)
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—V - (A - VHS™) — kjp HE* =V - (Ao - VHY) + k.. H (2.21)

Equations (2.20) and (2.21) are a particular case of a more generic expression

—V-(p-Vu)+qu=f (2.22)
where, for a TM polarisation,
flz,y) =V - (A, - VEI) + ke, EX (2.23a)
p=A, (2.23b)
q = —kge.. (2.23¢)
u = g (2.23d)
u= B (2.23¢)
and for a TE polarisation
fla,y) =V - (A - VH) + kgp.. H™ (2.24a)
p=A (2.24b)
u™ = Hm (2.24d)
u= H* (2.24¢)

This new notation will be of great help when computing the equation’s weak form in section 3.4
by simplifying their expressions

2.1 Cold Plasma Model

In this work, we have not considered the thermal distribution of particles nor the effects of
the heating methods such as ICRH. Instead, we have treated our plasma with a cold plasma
approximation, in which we considered the thermal velocity of particles much smaller than the
phase velocity of an injected wave. This approximation is necessary due to the early stage
of MAXWEL software, in which we solve a time-harmonic equation, and hence we need a
time-independent permittivity tensor. However, the study of EM wave accessibility is of great
importance. The code assesses whether an EM wave can propagate in an arbitrary linear
medium, such as plasma. Notice that the cold plasma model offers a fairly accurate idea of
the capability of the wave to reach the plasma region of interest albeit its lack of wave-particle
interaction.

To compute the permittivity tensor of a cold plasma we need to start from the definition of €.,
that has been introduced previously, but considering that ¢, = I. This is forced essentially to
simplify calculations. It is commonly considered plasma as a vacuum-like material; for which
all information regarding the permeability, and most importantly, the permittivity is stored in
the conductivity tensor. A more rigorous derivation of €,. is shown in the following section.
Ere =T —i— (2.25)
wEeo
Consequently, there is only the conductivity o as an unknown, because w is an input parameter.
To compute o we need to derive the linear expressions of the particles’ velocity first and then
use the total current expression, assuming that there are no external input currents

J=eng(v;—v.)=0FE (2.26)
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Starting from the initial dynamic equations (2.27), assuming small perturbations and taking
the first-order linear terms we can retrieve the velocity functions for both ions and electrons
(eq. (2.28)). The cold plasma model allows us to consider the fluid stress tensor ®; = 0, valid
when the wave phase velocity is much greater than the thermal velocity of species.

Me <8§;e —|—'ve~V've> =—e(E+v.xB)-V- &, (2.27a)
81)1-
Uy = 4 whs — weky (2.28a)

m  w?—w?

giny + w.FE,

m  w? —w?

(2.28b)

Uy =

v. =L p, (2.28¢)
mw

B
Where w. = T20 s the cyclotron frequency. Now, using egs. (2.25) and (2.26) we can

m
compute the cold plasma permittivity tensor. Expressing it in Stix notation, the tensor is
[29, 30, 31]

€1 —lggy O S —iD 0
&= |icy €. O0|=1D S 0 (2.29)
0 0 €|| 0 0 P
where
R+ L w;
R-1L Wej W
J <
UJ2~
€|| =P=1- w—p; (230C)
J
w2,
R=S+D=1->» —2 (2.30d)

L:S—Dzl—Zw(—m (2.30e)

n; (Ze)?

The plasma frequency is defined as w}; =
oM

J
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2.2 Wave propagation theory

The cold plasma permittivity tensor (eq. (2.29)) plays a crucial role when solving the disper-
sion relation. From this expression, one can extract many insights about cutoff regions and
resonances or at which velocity the wave will propagate, among other relevant information.
To compute the cold plasma dispersion relation (CPDR) it is necessary to obtain the full wave
equation first. This time, instead of retrieving a particular case such as the Helmholtz equation
as previously, we will aim for a more general and three-dimensional expression. To do so, we
will rewrite egs. (2.1) and (2.2) in the frequency domain. Have in mind that after the Fourier
transformation V — —ik and 0; — iw

ik x E = iwB (2.31)
ik x B=—p(J+iweE) (2.32)

Combining these two equations, we can write
kx (kxFE)=iwp(J+ iweFE) (2.33)

which by means of Ohm's law, J = o - E, we obtain

kx (kxE)=iwuocE — w’epE (2.34)
w? o
kx(kxFE)=——|I—-i— | E 2.35
< (kx B) =~ (1-i-2) (2.39)
And consequently,
nx(nxE)+e.-E=0 (2.36)
where n = k:E is the refraction index and &,, = I — z— The refraction index can be split

into two components n = mn, + nya; but for our purpose, n will be considered to be 0
since our wave propagation always happens in the xy plane — that is, perpendicular to the z
direction —. With all these considerations and using eq. (2.29), eq. (2.36) can be rewritten
as [30]

S —n?cos’f —iD n2cosfsinf
1D S —n? 0 -E =0 (2.37)
n? cos 6 sin 0 0 P —n?%sin*6
where 0 is the angle between k and he z axis. For our solutions, § = 7 always. Solving this

set of homogeneous equations is equivalent to finding the CPDR. The non-trivial solutions
are obtained by the roots of the matrix determinant. Finding these roots is not necessarily an
easy task, and many possible solutions can be found. Each of these solutions or modes has a
specific name or label, which may vary according to the author, context, or discipline. But for
our interest, we will mention just a few of these cases.

When the propagation of the electric field is parallel to the z direction (§ = 0) there are three
possible solutions:

e P =0. Langmuir waves.
e n2 = R. Right-handed waves.

e n? = L. Left-handed waves.
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As we mentioned, these modes will not be observable in the solutions of our problem, since
the propagation occurs in a 2D cross-section plane perpendicular to 2. For 6 = 7, there are
two propagation modes:

e n° = P. Ordinary wave or slow wave.

o n?= %. Extraordinary wave or fast wave.

In eq. (2.30) it is shown all full expressions for parameters P, S, R and L. For those regions
in which these parameters make n diverge, or become 0; we will have resonant conditions and
cutoff conditions, respectively.

2.2.1 Ordinary Wave

The polarization of the ordinary or slow mode corresponds to a TM wave since the electric
field is parallel to the background magnetic field B,. The refraction index of an ordinary wave
only depends on the plasma frequency, and the magnetic field does not affect the dispersion
relation whatsoever. As presented above, the dispersion relation is given by

2.
ny=P=1-% -4 (2.38)

—~ 2
J

Consequently, there is no resonance condition, other than the trivial w = 0. However, there
is a cutoff condition at which nQO < 0 for w < w,. When nzo is negative, the wave vector
k will have a complex component which eventually will add a negative exponent coefficient,
attenuating the wave.

For the ordinary wave to propagate, it can be derived from the general CPDR that the wave
frequency has to be lower than the ion cyclotron frequency, and consequently, it should be
launched from a high-field side antenna. At the same time, the wave would not penetrate due
to a resonance surface in the low-density edge of the plasma [32]. Therefore, the slow wave
has poor penetration and can not be used for ICRH. For this reason, the focus will be given to
TE propagation, i.e., extraordinary waves, as ICRF heating mechanisms use this polarization
to heat ions in present fusion devices.

2.2.2 Extraordinary Wave

The solution of the extraordinary wave dispersion relation for two species (electrons and ions)

s _ RL _ (W4 wei) (W = wee) — w2] [(w = wei) (W + wee) — w?]
o 5 - (WQ o wgl) (WQ o w?:e) + WIQJ (wcewci - O)2) (239)

where w? = w2, +w?; and w,; is the cyclotron frequency. The resonance conditions (nx — oo)
would be those for which the denominator becomes 0. This condition happens when

wf + wf wg — w? 2
(.U2 — 5 4+ ( 2_) -+ w}%ewzi (240)
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where w; = ng + ng. By neglecting the terms — due to the big difference in mass, we can

m;
simplify eq. (2.40) as
w?]H = wﬁe + wfe (2.41)
2
2 . wpe + WeeWei
Wrg = Weelei ( Wge_+ wz_e ) (242)

These are the two roots of eq. (2.40), which are named as upper hybrid resonance wyy and
lower hybrid resonance wr . Similarly, the cutoffs (nxy = 0) are found at the zeros of the

numerator in eq. (2.39).
( ce CZ> 2 ce (&) (2 13)

Cutoff frequencies act as a limit for which the wave can penetrate the plasma. We can
distinguish two different conditions, L = 0 or L-cutoff and R = 0 or R-cutoff. Since plasma
heating using ICRH is performed with extraordinary waves, it is of great relevance to correctly
identify such conditions. An important aspect of ICRH efficiency is to allow the waves to reach
the inner regions of the plasma, but this not always can be easily achieved. For example,
the injected wave may cross and tunnel through as an evanescent wave, bounce back, or
even switch from a propagating mode to another when finding these cutoff regions [33].
This behaviour can be complex to describe and depends on many parameters, such as the
wave harmonics or the plasma composition, to mention a few. Having a full-wave simulation
software, able to capture the physics of this scenario, would help to better understand and
analyse different configurations. However, notice that the cold plasma model fails at describing
properly wave resonances and wave-particle interactions, to account for these effects one
requires a hot permittivity tensor, which is out of the scope of this thesis. This is the main
reason most antenna codes use the cold plasma model as analysis is carried out at the scrape-
off layer (SOL) as thermal effects can be neglected, whereas wave solvers for the plasma core
region use a hot plasma model, especially if resonances occur.




20

2. Electromagnetic theory



Chapter 3

Finite Elements Method

In the present chapter, we will present the theoretical framework used for the numerical sim-
ulations performed in this work. The Finite Elements Method is a well-established numerical
tool, that allows solving linear and non-linear partial differential equations (PDE) in a physi-
cal domain, limited by a set of boundary conditions. These kinds of problems are known as
boundary value problem (BVP). The algorithm is not limited to a particular domain shape or
size nor a set of PDEs, allowing it to be highly adaptable and applicable to different fields
of physics. The Finite Elements Method was first used in the 1940’s decade by Alexander
Hrennikoff and Richard Courant, and it was initially applied to the calculation of mechanical
stress and elastic deformations in continuous solids [34, 35].

3.1 General framework

The main principle of FEM is the division of a computational domain into a set of finite
elements (fig. 3.1a), building up a mesh structure where our differential equation will be
solved. Every element has a series of nodes, or coordinate points, depending on the element'’s
shape and the order of approximation. For example, the most common elements in use are
triangles and quadrilaterals for 2D meshes or tetrahedra and hexahedra for 3D meshes. Within
an element, the unknown function to be found is represented as a linear combination of a
series of basis functions. These basis functions are usually called shape functions and can be
linear, quadratic, or even higher polynomials. Within each element, a local system of algebraic
equations is built, and using the connectivity between elements, a global set of linear equations
is constructed. The number of nodes for a given element depends only on the polynomial order
of the shape functions; for example, an element can be linear or quadratic with a triangular or
quadrilateral shape (fig. 3.1b). Higher order elements do also exist, such as cubic elements or
a specific case of the quadrilateral quadratic element, called the Lagrangian element.

One of the most simple methods to be used when the field equation and boundary conditions
are known, as in a BVP problem, is the called Galerkin method [37, 38]. In particular, and
when the problem allows it, by using the same weighted function used to approximate the
elements we can reduce the problem to a well-conditioned linear system.

A typical BVP can be represented as
Lu=f (3.1)

where L is a partial differential operator, f is the non-homogeneous term and u is the unknown

21
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(a) Most common shapes of finite elements; in 1D, 2D and 3D.

(b) Linear elements have nodes on their vertices, while
quadratic elements also have nodes on their edges.

Figure 3.1: Overview of types of elements and their shapes. Figures extracted from [36].

function to be determined. Also, the boundary enclosing the domain of the differential equation
is called I". Some examples of relevant and well-known PDE that govern BVP are

e Transport equation L = 0; + ¢0,
e Wave equation L = 97 — ¢*0?

e Heat equation L = 0, — k0>

e Laplace equation L = V?

Since our domain is decomposed in several elements, we can express eq. (3.1) locally, restricted
to the domain of a given element

Lu® = f° (3.2)

where, u¢ and f¢ are the unknown and independent functions of the e-th element. € is
approximated as a series of weighted functions N¥, also called shape functions (eq. (3.3)).
These functions have special properties that will be explained later, but it is important to
mention that eq. (3.2) will only be fulfilled by the exact solution. Once we approximate the
unknown function to a linear combination of shape functions, eq. (3.2) will be consequently
fulfilled only approximately. For this reason, we can define the residual R® = L u® — f¢, which
ultimately is aimed to be minimised.

u® = Zuj N7 (3.3)
=1

So the goal would be to find these uj that minimise the residual, that means R =~ 0. Then,
instead of finding a solution for R° = 0, we look for solutions that on average are equal to
zero, by evaluating its inner product with respect to a series of weight functions w{, where i
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always go from 1 to n (being n the number of nodes per element) [37]. This ensures that the
number of unknowns and equations is the same.

(Re,ut) — / REwtdQe = 0 (3.4)

This method is called weighted residuals. w{ can be of different nature, and corresponding to
their shapes they can be named as:

Collocation method: w§ = §(z — ;)

Subsectional collocation method: wf is nonzero in a subdomain within its element.

o Garlekin method: w{ = Nf¢
e Petrov-Garlekin method: w{ # N¢
e Least squares method: w{ = L NY

In this work, we have used the Garlekin method because it is the simplest and most adequate
for the conditioning of the equations we need to solve. With this approach, eq. (3.4) can be

transformed to
/ w§ L (Zu; N;) dQ° = / w f€ Qe (3.5)

j=1
> ul ( N{ LNt dQe> = [ Nffedo (3.6)
= Qe Qe

Generally, the differential operator L can be of second order, and this will be the case for many
of the electromagnetic problems that we will be focused on solving. Thankfully, by integrating
by parts — or its 2D and 3D generalization —, we can reduce these second-order derivatives
to first-order derivatives. This new way of expressing eq. (3.6) is called weak form. In any
case, one can already visualise in eq. (3.6) the expression of a linear system of equations such
as

> b () = b (3.7a)
j=1

(a). = [ NfLNgdQe (3.7b)

Qe

b= [ N¢fedos (3.7¢)
Qe

or expressed in a matrix equation formulation

Acul = b (3.8)

3.2 Matrix assembly

But the equations shown so far, such as eq. (3.8), are specific to a given element from the full
mesh or domain. To compute the full unknown u, we will need to assemble all of the local
matrix equations, resulting in a linear system with as many unknowns as the number of nodes
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composes our mesh. Consequently, we will obtain a linear system of size N x N represented
as:

Aigjg < Aigjg + A% (393)
big < big -+ bf (39b)
Au=1> (3.9¢)

Where egs. (3.9a) and (3.9b) shows the assembly process (i, and j, are the global indices,
and ¢ and j are the local indices) and eq. (3.9¢) is the global system of equations. Local
indexes will always be numbered from 1 to n, being n the number of nodes per element, while
the global indexes can be numbered from 1 to IV, being N the total number of nodes in the
whole mesh. Clearly, a node can have an arbitrary global index, while its local index will be
limited to a small set of possibilities. The relation between local and global indexes is stored
in the connectivity matrix or connectivity table.

Me nq N9 ng

1 11611 11676 11577
2 12042 11975 11926
3 2562 2520 2591

1500 7584 7410 7488

M nq N9 ng

Table 3.1: Example of connectivity matrix for a linear triangular element (only three nodes).

Local node Global node
numbering =~ _ee-emtTTIITIIII el numbering

L
-~
LT

Figure 3.2: Visual representation between local and global numbering. Extracted from [21].

In table 3.1, it is represented a real case example of a connectivity matrix, where M, is the
element numbering; ny, ny and n3 columns are the first, second, and third local indices and
the numbers within the table are the corresponding nodes in the global numbering.

Since a given node will be only in contact with a reduced number of other nodes, the as-
sembly process shown in eq. (3.9a) will result in a sparse matrix. Sparse matrices present
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the characteristic of having non-zero values in their diagonal and null values in most of their
non-diagonal coefficients. This allows for saving up a lot of memory and computational time,
as all zero-valued elements do not need to be stored if the right method is used. Some of
the most common formats to store sparse matrices are Compressed Sparse Row (CSR) and
Compressed Sparse Column (CSC). MAXWEL code uses CSR format, so we will focus on
explaining only this method, but CSC is analogous to the same principle.

Imagine an arbitrary shape matrix A. There will be at least 3 arrays needed to store its values;
one that stores the numerical values of A, a second to store the column at which the values are
located, and the third, which encodes the rows at which non-zero values are found. Optionally,
the array that stores the numerical values of A, can be split in two; one for diagonal terms and
another for non-diagonal terms. As a little example, let us say that A is the non-zero values
array of a 4 by 4 matrix A

0000
5800
A= (3.10a)
0030
0600
A:[5 8 3 6 (3.10b)
m=0121] (3.10¢)
=[00 23 4] (3.10d)

JA simply indicates column indices of elements found in A. And IA is the cumulative number
of non-zero values going row by row. So to extract a row of data from A, lets say row = 1,
we simply:

row_start =IA [row]|
row_end =IA [row + 1]

that is row_start = 0 and row_end = 2, so the extracted values are A[0: 2] = [ 5 8 | with

columns JA[0:2]=[0 1 ]

3.3 Element categories

As shown in fig. 3.1, there are different types of elements, according to their shape, dimensions,
and approximation order. In this section, we will present in more depth the properties of these
elements and the particularities of their shape functions N¢. We will limit the explanation to
bi-dimensional elements, since 1D elements are of little interest to our particular problem, and
3D elements are yet not implemented in order to solve a 3D wave equation.

Elements in an arbitrary domain can have arbitrary coordinates in each of their nodes and
vertices. However, always exist a linear transformation from the physical domain (z,y) to a
master domain (£, n), such that in the master domain (£, 7) € [0,1]. Also, we may omit the
¢ notation since is evident that shape functions are not globally defined but element-wise.
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3.3.1 Linear Triangular element

Linear Triangular elements present only 3 nodes, one in each vertex, and they have straight
edges. As a general convention for all element types, the nodes are labelled in the anti-
clockwise direction. Each node has an associated shape function because one of the main
properties of all given elements is that

1 ifi=j

) (3.11)
0 otherwise

N;(&i,mi) = 0y = {

so Ny = 1 at node 1, N, = 1 at node 2, N3 = 1 at node 3, and so on for higher order
elements. Another essential property for shape functions is that the sum of all V; within an
element must add up to 1.

PRI (312)

Y4 y
3
1e3

2
X 0 1 3

(a) Linear triangular element in an arbi- (b) Linear triangular element in the mas-
trary domain. ter domain.

Figure 3.3: There is a linear transformation from a conventional domain (x,y) to the master
domain (&,1m).

But to know the exact form of this shape function we need to derive them. Since we are
using a linear element, we know that the order of our solutions u¢ and the order of the shape
functions will be one, and consequently they will only depend linearly with x and ¥, or with &
and 7. To take advantage of knowing the exact coordinates of nodes in the master domain
will help computing the shape functions; and later, it will be just needed to do an inverse
mapping to the conventional domain.

Considering a solution in the form of
ut (§,m) = c1 + € + cam (3.13)
which are evaluated at the nodes in the master domain:

ue(glanl):uﬁzcl“‘CQ'O‘i‘Cg'O:Cl
ut (§o,m2) =us=cit+c-l14+c-0=c1+c (3.14)
u® (&s,m3) =u§=c1+c-0+c3-1=c1+¢3
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so the coefficient values are

¢ =uj (3.15a)
co = —uf +u§ (3.15b)
c3 = —ui +u§ (3.15¢)

and substituting this coefficients in eq. (3.13) and re-arranging the terms, it is obtained

u(§,m) = (1 =& —n)uf + &§uy +nus (3.16)

which comparing with eq. (3.3), we can easily identify

Ni=1—-&—n (3.17a)
Ny=¢ (3.17b)

The mapped coordinates also follow the same relationship due to the linear transformation
v (€)=Y 2N (&) = (1— & —n) 2§ +Eab +nas (3.18a)
J

y(&m) =D uiN; (&) = (1= & —n) i +Eus +nys (3.18b)
J

As it has been shown in eq. (3.6) and other equations, differential operators will be applied
over N; in the weak form of our differential equation. That means that we will need to
compute the derivatives over N;. These derivatives might be useful as well at other stages of
the derivation, such as post-processing the solution. The derivatives 0:/N; and 9, N; in the
master domain are rather trivial, and using the Jacobian matrix (3.19), we can easily compute
the derivatives in the conventional domain 0,N; and 9, ;.

or O
¢ o Ty Yo Y
Jy = = (3.19)
dy 0
o2 o) \as—at w5y
o0&  On
Consequently
0& ox
- J 3.20
oy, | =" v, 20
on dy
ox o0&
=Jy 3.21
ON; Nl oN; (3.21)

dy on
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So, in the case of linear triangular elements

ON; . .
85 1 Yo — Y3

= 3.22a
ON; | | - ( )
877 $2 1'3
ON, . .
ot 1 Ys — Y1

= — 3.22b
ON, Inl |, . ( )
ONj3 . .
85 1 Y1 —Ys

= 3.22c
ON3 Inl\ . ( )
on Ty — Tg

We can observe that the derivatives of the shape functions are constants and only depend on
the nodes’ coordinates. That facilitates the integration of the weak form equation, compared
to quadrilateral or higher order elements.

3.3.2 Quadratic Triangular Elements

Quadratic Triangular elements present 6 nodes in total; one in each vertex, and one in every
edge. The higher-order shape functions allow to present curvilinear and not necessarily straight
edges. Despite nodes being labelled in the anti-clockwise direction, as stated in section 3.3.1,
there is an established numeration convention of labelling all vertices nodes first and then all
the edge nodes. Properties shown in egs. (3.11) and (3.12) apply to these elements too.

(a) Quadratic triangular element in an ( b) Quadratic triangular element in the
arbitrary domain. master domain.

Figure 3.4: Now elements can be curvilinear in (z,y) but they are mapped to the master
domain (£,1n) using the same concept.

Now, we consider a solution of the type

ut (&,1) = 1+ € + can + caén + 5% + con’ (3.23)
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and doing the same procedure as in section 3.3.1, it is obtained the corresponding shape

functions:

Ny =(1-&—n)(1—2§—2n)

Ny =£(2 — 1)

N3 =n(2n—1)

Ny =4€(1 =& —n)
N5 =4¢n

Ng =4n(1 - & —n)

The derivatives 0, N; and 0,N; are computed directly using eq. (3.21).

3.3.3 Bilinear Quadrilateral Elements

(3.24a)
(3.24b)
(3.24¢)

(3.24d)
(3.24¢)
(3.24f)

Quadrilaterals are another widely used element shape. These elements present four nodes, one

in each vertex. In this case, the solution has the polynomial form of

u (§,m) = c1 + 26 + can + caén
y A
3

1 2

»
X ("19'1)
(a) Arbitrary domain (b) Master domain

Figure 3.5: Schematic of a bilinear quadrilateral element.

Applying the same logic as in sections 3.3.1 and 3.3.2, now shape functions are

No =1 (1-8)(1-0)
Ny =1 (14+6)(1-n)
Ny =3 (146 (1+)
Ny=1(1-6)(1+n)

(3.25)

(3.26a)
(3.26b)
(3.26¢)

(3.26d)



30 3. Finite Elements Method

3.3.4 Quadratic Quadrilateral Element

There are two different quadratic quadrilateral elements, 8-noded elements (also known as
serendipity element) and 9-noded elements (also named Lagrangian element). Fundamentally,
serendipity elements have one node in each vertex, and one node in each edge. Lagrangian
elements have an extra node in the centre. Here in this work, we will only present serendipity
elements, since lagrangian elements are not implemented in MAXWEL software.

Ya
('1!1)
X ('1:'1)
(a) 8-noded quadratic quadrilateral ele- (b) 8-noded quadratic quadrilateral ele-
ment in an arbitrary domain. ment in the master domain.

Figure 3.6: Serendipity elements can have curvilinear edges thanks to their higher-order poly-
nomial approximation.

Shape functions for serendipity elements are:

Ni=; (=90 —n)(-E—n-1) (3.272)
Ny =1 (14O —n)(E—n—1) (3.27b)
Ny =3 (146 (1) (€+7 1) (327¢)
Ny=7 (-8 +n)(~E+n-1) (3:274)
N5 :% (1-¢)(1-n) (3.27¢)
Ng :% (1+&) (1 —n) (3.27f)
Ny :% (1-¢)(1+n) (3.27g)
Ng :% (1= (1—7n% (3.27h)

3.4 Weak form in electromagnetism

Considering eq. (2.22) and using eq. (3.4) we can obtain an approximate solution for our wave
equation. By choosing the appropriate weight functions wy, and reducing the integrand to
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first order derivatives (with integration methods such as Gauss’' theorem, Stokes’ theorem or
integration by parts, and other generalisations), eq. (2.22) can be reduced to its weak form.
To derive this weak form, we will consider firstly 3D elements, to simplify the procedure. Once
it is in its final form, one can assume axial invariance (e.g. along z direction), so all the z
derivatives will be 0, and reduce the integration domain to a two-dimensional element.

Combining egs. (2.22) and (3.4) it is obtained the following expression

///QE wé [~V - (p© - V) + ¢“ut — f]dV =0 (3.28)

and using the identity V - (v A) = ¢V - A+ A -V, where A and v are vector and scalar
fields respectively, eq. (3.28) can be turned to:

/// [(p© - Vue) - Vwi — V- (wf p° - Vu®) + ¢° wf u® —wj ] dV =0 (3.29)
Qe

Using Gauss' theorem, we can switch the second term from a volume integration to a surface
integration, resulting in

///e [(p° - Vu©) - Vuf + ¢° wf uf] dv_ﬁée wt (p° - V) dg_///e Wt fedV =0 (3.30)

Now, considering z as an invariant axis, we can reduce the integration domain to a two-
dimensional element:

// (P - Vue) - Vot + ¢¢ wiu]dS — P w (p° - Vue) df—// we f¢dS =0 (3.31)
e l_‘& e

Equation (3.31) is the weak form expression, valid for all 2D surface elements within a mesh.
However, for interior elements, the line integral along their edged cancels out with their adja-
cent neighbour (l: = —ZE) Consequently, the line integral can be omitted for interior elements
and only needs to be taken into account for elements having at least one external edge, where
boundary conditions must be enforced. Now, keep in mind that we apply the Garlekin method
(w¢ = N;), and by decomposing our solution u¢ such as in eq. (3.3):

Z::“? [// [(p® - VN;) - VN; + ¢"N; Ny dS} = /Q N; fedS (3.32)

From eq. (3.32) we can directly interpret the terms of the linear system to solve, where u
are the unknowns, the left-hand side terms inside the bracket are the matrix elements and
the right-hand side is the independent vector. Now, after substituting ¢¢, p® and f¢ from
eqgs. (2.23) and (2.24), egs. (3.7b) and (3.7c) present the shape of

(a%); = //Q (A, - VN;) VN, — k2e..N;N;] dS (3.33a)

b — / NV - (A, - VE™) + k2. E™dS (3.33b)

for TM polarisation and

(a); = //Q [(A-- VN)) - VN; = kg pi* NiN; | dS (3.34a)
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b= [ NV (A VEE) R HdS (3.34b)

for TE polarisation.

Using the same logic shown in section 3.2, the following step would be to assemble the element
matrices A“u® = b° according to the information stored in the connectivity table, obtaining
the full linear system Au = b.

3.5 Solving the linear system

As mentioned in section 3.2, the element matrices are assembled to get a full-size matrix with
as many rows and columns as nodes are in the mesh. These element matrices are assembled in
such a way that the resulting linear system is called a sparse system, or sparse matrix. This is
because the unknowns are only affected by the solution of the neighbouring nodes and not by
nodes at a faraway distance. Consequently, all coefficients within the diagonal of the matrix
will be necessarily non-zero and most of the non-diagonal coefficients will be zero.

Figure 3.7: Visual example of non-zero coefficients in a sparse matrix.

There are several methods to solve u = A~ 'b: but when matrices are too large, some of them
become inefficient and slow. For this reason, the solving method of such systems — where
matrices may be 20.000, 60.000, or even 10° rows and columns — is quite critical. During
the project, we have used two different solvers: conjugate gradient method and bi-conjugate
gradient method. Despite the MAXWEL software being made from scratch by the author of
this work, the solver module implemented in the solution is one of the few, if not the only,
packages that have been made by a third party. This is mainly because the algorithm is more
than 70 years old [39] and has already been described, implemented, and used before with
much success.

3.5.1 Conjugate Gradient Method

Conjugate Gradient method (CG) is an iterative method able to solve a linear system such as
Ax = b, assuming that A is symmetric and positive definite. The main idea or concept of
this method is to define a residual vector such as ro = b — Axy; if the error associated with
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r is sufficiently small, then the solution is given as good. If not, & and r are modified such as

Tpi1 = Tk + Dy (3.35)
Tikr1 = Tk + CkkApk (336)
Pr+1 = Tkt + Bkpy, (3.37)
riTE
o = 3.38
* PZApk ( )
_ TLiTh+1
Br = rlre (3.39)

where k is the iteration number. p, are the conjugate gradients vectors, and on the first
iteration p, = ro. This method is called precisely conjugate gradients because plTApj =0 for
i # j (that is A-conjugated), and because p, is the direction that minimises the functional f.

1
f(x) = inA:I: —b'x (3.40)
Vfilx)=Ax—b (3.41)
So Vf(xr + agp,) — 0 after enough iterations. We can assure that there is only one

possible solution to V f = 0 since the Hessian matrix of f is H(f) = A, which is symmetric
positive-definite.

3.56.2 Bi-conjugate Gradient Method

The Bi-conjugate Gradient method [40] (Bi-CG) is a more general case of the CG method, in
which A it is not necessarily symmetric and positive definite. In this method, there are two
sets of residual vectors T, 75 and gradient conjugate vectors p,, p,. Here, the difference
between these vectors are

To = b— Awo (342)
'7'0 =b-— ATwo (343)
rk-i—l =Tk + akApk (344)
Tri1 = Tr + a; ATp, (3.45)
Pri1 = Tkt1 + PPy (3.46)
Dry1 = Tit1 + OkDy (3.47)
TET)

ap = — 3.48

g DLADy, ( )

By = HHLTh (3.49)

TETk

As it was mentioned in the CG method p, = 7, and similarly p, = 7. Vectors 7y, 71, p;
and p,. present bi-orthogonality:

7_'17']:7'17_']20 ]<Z (350)

bi-conjugacy:
ﬁi‘A'pj:pi‘AT‘I_)j:O J <t (3.51)
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and mutual orthogonality properties:

In fig. 3.8 it can be appreciated, for a particular example, how after several iterations, the error
decreases significantly. Figure 3.8a shows that Bi-CGM has a slightly better performance, as
it allows to reduce the number of iterations by roughly 500. However, despite higher order
elements providing better accuracy in the results, in fig. 3.8b is seen that a bigger number of
nodes has a greater computational cost; hence the solution takes longer to converge. Other
solving methods could be potentially suitable to our type of problems; but since Alya presents
many solvers in its kernel and it is expected that MAXWEL will work on Alya in the near
future, we have decided to use these two methods for now.

2 ® CGM
10 ® Bi-CGM
100,
10—2,
Irl
Bl Jo-e.
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1078 e
i
10—10, J?
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iteration
(a) Convergence speed for CGM and Bi-CGM.
@® Linear triangles
101 ® Quadratic triangles
® Linear quadrilaterals
1 @® Quadratic quadrilaterals
10714
||I"|| 1031
b
10—5,
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1077+
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(b) Convergence speed of Bi-CGM for different types of meshing elements.

Figure 3.8: Error evolution for every solver iteration.



Chapter 4

Code Development and Validation

In this chapter, we will explain how the MAXWEL code works and present some of the results
obtained by its simulations. As it has been mentioned before, this code was made from scratch
but inspired by the work in [21]. MAXWEL code has been written in Fortran, due to its high
speed and to be included in Alya [23, 24], where most of the code is written in Fortran.

4.1 Code description and functioning

MAXWEL is essentially a FEM code, capable of solving the Helmholtz equation in a non-
homogeneous, anisotropic media. To do so, the software is split into several modules, each
with different tasks and results. Here, we will see the working principle of those most relevant
modules in more detail.

Define files,
varaibles and
vectors

Readinput | | Readand | | Build sparse
parameters process mesh logic

v

reader Hmesh_readerH sparse_logic ‘

{ exit_writer H derivatives H solver ‘

Build weak form
and matrix
assembly

Solve linear
system

%
%

Write solution [« Postprocess def vectors

(a) Logical flowchart of MAXWEL framework. (b) Flowchart of relevant MAXWEL modules.

Figure 4.1: Schematic process of MAXWEL software. On the left: Overall logic of the code.
On the right: Main modules working on the code.

4.1.1 Definition and input values

A distinguished characteristic of compiled languages such as Fortran, compared to interpreted
languages, is that we need to declare a variable before using it. As one can imagine, a code
with hundreds or even thousands of lines and several modules and packages, may need many
variables to run smoothly and to be understood by the developers. For this reason, the main
variables used in MAXWEL are defined in three modules. One for parameters related to file
management, writing, and reading; another for scalar parameters, and a third for dimensional
parameters, such as vectors and matrices. However, some of these parameters might be desired

35
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to change from simulation to simulation, and hard-coding their values is usually not a good
practice. For that purpose, there is a module called reader, which takes a file input containing
several parameters relevant for experimentation. Some of these parameters are:

e freq: Wave frequency in MHz.

e phii: Angle of incidence in rad respect to the x axis.

e pol: Polarisation mode, ‘TE' or “TM'.

e elem type: Element’s order, either linear ‘1ine’ or quadratic ‘quad’.

e eclem shape: Element’s shape, either triangular ‘tria’ or quadrilateral ‘squa’.

e plasma: Boolean flag whether the permittivity is computed as a cold plasma tensor or
given as an input.

e epsilon and mu: 3 X 3 matrices with the numerical values for the relative permittivity
and permeability, either real or complex values.

Some other parameters regarding the solver (method, tolerance, iterations... ) and the mesh
origin and structure can also be manually modified through this input file.

4.1.2 Handling the mesh

The domain in which our problem and equation will be solved, and how it is discretised, is a
key aspect of FEM. lIts structure and organisation must be thoroughly designed to accurately
represent the physics of the problem to be solved. For example, the level of refinement (i.e. the
element size) has a significant impact on the accuracy of the solution. The elements must be
small enough to capture the wave's oscillation but without heavily compromising the execution
time. Mainly, we have used circular and tokamak cross-section geometries, to demonstrate
MAXWEL feasibility, although other geometries have also been tested.

To produce these meshes two different software were used. Firstly, we modified a meshing
function provided in [21], that uses the principle of Delaunay triangulation [41] to discretise a
given domain; but at some point, this script was limiting us to a certain number of geometries.
Since our goal was to simulate the wave propagation within a tomakak-like shape reactor, we
moved toward a more dedicated software, designed to mesh arbitrary domains. GiD [42] is a
professional software able to mesh highly complex geometries with a high level of customisation.
Ultimately, this tool was used to correctly mesh the geometry of a tokamak cross-section.
The tokamak geometry has been extracted from EQUILI[28] software, being currently under
development at BSC's Fusion group. EQUILI solves the Grad-Shafranov equation modelling
the equilibrium in an axisymmetric plasma using CutFEM, an unfitted mesh Finite Element
Method. By solving the Grad-Shafranov equation, one obtains the toroidal magnetic flux
surfaces, which is shown in fig. 4.2.

Despite the geometries that have been tested so far are not extremely complex, they need
particular settings to work properly in MAXWEL. The most important aspect of meshes is
that we need at least two types of materials within the mesh —specified with a numerical
label— and every boundary must be labelled too (either boundaries between materials or
outer boundaries). These two materials are the inner scattering media and an outermost
locally conformal Perfectly Matched Layer (LC-PML) region [43]. Generally, we add an extra
layer of vacuum in between, to help visualise the wave propagation.
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Figure 4.2: Toroidal magnetic flux computed by EQUILI with ITER parameters. The red line
corresponds to the separatrix.

PML domains have been widely used for mesh truncation in numerical simulations of electro-
magnetic radiation. The key concept is to map a real-valued domain to a complex domain.
These complex coordinates introduced in the electromagnetic wave yield to non-Maxwellian
fields, that are attenuated after a certain characteristic length. The locally conformal variation
allows generating PML regions for difficult geometries with abrupt changes or discontinuities
in their curvatures.

4.1.3 Building the linear system

After calculating the number of non-zero matrix coefficients and consequently defining the
length of the matrix diagonal and non-diagonal arrays, it is time to use egs. (3.33) and (3.34) to
build our linear system of equations. To do so, it is first necessary to define the shape functions
N; and compute their Jacobian matrices and derivatives in the non-master (or conventional)
domain. This part is critical for the functioning of the code, and since Fortran has no internal
linear algebra libraries, debugging this part was frequently time-consuming. In this section
of the code, there are the conditions defined to assign the correct values for permittivity and
permeability according to the material type of the mesh element (see fig. 4.3) and the condition
regarding the kind of permittivity tensor of the scattering material (either a conventional
dielectric or a cold plasma media).

While the element matrices (ae);'- are being computed, the whole system matrix is being
iteratively self-assembled as in egs. (3.9a) and (3.9b). One remark regarding the independent
vector b° and b is that f¢ is essentially the same operator that it is applied to the scattered
field u, but applied to the incident wave w!™°. Furthermore, being '™ a unitary plane wave,
when the medium is vacuum (that is €,. = p, = 1), f¢ becomes 0. So the only non-zero
f¢ values are within the scattering nodes. For these two reasons, the independent vector b is
built as

(4.1)

b=20 in vacuum
b= —Au™ in scattering media
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circular geometry. extracted from EQUILI.

Figure 4.3: Different meshes that were introduced for simulation in MAXWEL. Beware the
difference in sizes between the two.

4.1.4 Post-processing the solution

When using FEM, the output result of the differential equation might not be the final result
one desires to obtain. Or maybe there is also interest in extracting extra insight from the
solution. Being the latter our case, after we solve the full matrix system Aw = b we are also
interested in computing the in-plane fields from either H, or E,. From egs. (2.7) and (2.8),
we can calculate the in-plane fields as

A O E,
= —u, (4.2)
H, Wito -0, F,
for a TM polarisation, and

[ 9H.
=€ (43)
E, Weo —0.H,
for a TE polarisation.

So in this module, the code computes the derivatives of the solution u by
dju = Zuiéj]\fi (4.4)
i=1

where j indicates either the x or y direction and n is the number of nodes per element.
In this way, we can extract the complementary in-plane field components, apart from the z
component of the electromagnetic fields.

4.2 Results and Validation

The first results from MAXWEL were obtained using a homogeneous dielectric permittivity
tensor, either isotropic or anisotropic. For these cases, the linear system resulted as positive
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definite and symmetric, since the values outside the diagonal of €,. were zero. These results
were benchmarked with Ozgiin and Kuzuoglu book [21] since we were already using part
of their work as reference. However, while testing the cold plasma tensor implementation,
we observed that results were not consistent and varied abruptly depending on non-critical
parameters, such as the order of the mesh elements or their shape. This led us to realise
that the off-diagonal complex permittivity values in eq. (2.29) induced a non-symmetric linear
system. Consequently, in this case, our initial solver did not obtain correct results. After
implementing the Bi-CGM solver we benchmarked these results with a different source, the
ERMES code [44].

4.2.1 Validations against literature problems

As mentioned before, at the initial stages of the project, we validated our code against several
benchmarks provided by [21]. Some of them, listed below, are included in this text as examples
and verification of our code:

e TE polarisation with €,. = 4. Figures A.1 and A.2.
e TM polarisation with €,. = 4. Figures A.3 and A.4.
e TE polarisation with €,, =4, ¢, = 9. Figures A.5 and A.6.
e TE polarisation with £,, =9, €,, = 4. Figures 4.4 and 4.5.

These four cases have an electromagnetic wave of module 1 and a frequency of 300 MHz. One
can easily compare the results between the ones obtained by MAXWEL and the ones obtained
by [21] in the aforementioned figures. It can be appreciated how these excellent results are
identical to the ones used as reference. The rougher discretisation from figs. 4.5, A.2, A4
and A.6 might be only due to the visualisation tool, since we used a dedicated software called
ParaView [45] to plot MAXWEL results. In fig. 4.6 can be appreciated how well the values
are adjusted to the ones in literature, as the error between the two is negligible.

Htot z

1 l 1
[ 0.0e+00 0.0e+00

(a) H®" amplitude distribution. (b) HE°* amplitude distribution.

Figure 4.4: TE polarisation with €., = 4, €, = 9, simulated with MAXWEL.
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(a) H:® amplitude distribution. (b) H°* amplitude distribution.

Figure 4.5: TE polarisation with €., = 9, €,, = 4, from [21].
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Figure 4.6: Amplitude of H:®" field across y = 0 diameter for an anisotropic dielectric case.

4.2.2 ERMES

Once we simulated complex and non-symmetric permittivity tensors, we used the code ERMES
[44] (Electric Regularized Maxwell Equations with Singularities) to perform some benchmarks
to validate our code with a robust and established code in the community. In this way, we
compared the TE polarised isotropic case (fig. 4.7) and a particular case of a homogeneous
cold plasma tensor (fig. 4.8). This was, in fact, really important to asses that MAXWEL was
indeed working properly since both cases presented an exceptional agreement between the
different codes. The cold plasma parameters are

R=24521 L=-104.14 (45)
D =64.329 P = —44811 S = —39.808 '

As seen in figs. 4.7 and 4.8, both results are qualitatively the same, despite ERMES working
quite differently from our code. The simulations in ERMES were done with different meshes
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Figure 4.8: Comparing a cold plasma tensor between MAXWEL and ERMES. Incident wave

has an amplitude of 1V /m.

and with absorbing boundary conditions instead of PML. It has been tested that for finer

meshes, results converge closer to the ones

much more accurate results than linear ones.

edge elements, which present different prop

provided by ERMES, and quadratic elements gave
It is relevant to mention that ERMES uses
erties than regular nodal elements as those used in

this thesis. Also, we had to introduce the vacuum impedance Z; as an ad hoc normalization

coefficient, whose precision may also affect

the numerical result. Despite all of this, in fig. 4.9

it is also appreciated that the behaviour of the wave within the plasma media is in excellent

agreement between simulations.



42 4. Code Development and Validation
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Figure 4.9: Amplitude of H'°* field across y = 0 diameter for a cold plasma medium.

4.2.3 Tokamak geometry

One key step to simulate an EM wave in a tokamak reactor is to have a proper mesh of
its geometry. As mentioned in section 4.1.2, the mesh that we used was made thanks to
the geometry exported from EQUILI, under current development at BSC by a fellow master
student. We have produced results with different combinations of plasma densities, magnetic
fields, and wave frequencies, and some of the results are shown in figs. 4.10 and 4.11.

Figure 4.10: H'°* amplitude of a 60 MHz extraordinary wave dispersion in a D-T plasma with
By=5T and ng = 10" m—3.

The results in fig. 4.10 were obtained with an incident wave of 60 MHz, in a plasma of three
species (electrons, deuterons, and tritons) with a toroidal magnetic field of By = 5T and a
plasma density of ny = 10 m™3. For this simulation, there is no vacuum gap between the
cold plasma scattering media and the PML region. Also, the toroidal magnetic field varies as
x % and the electron density follows the experimental expression

ne(s) =no [k+(1—k) (1-5%)"] (4.6)
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Figure 4.11: H'* amplitude of a 53 MHz extraordinary wave dispersion in a D-T plasma with
B() =5.3T and Ny = 3.5 X 1019 m 3.

Htot_z

where s is the normalised magnetic flux, and k& and a are fitting parameters depending on
the scenario to be simulated. The normalised magnetic flux is computed by EQUILI but at
different coordinates from those of the tokamak mesh. Through interpolation, one can easily
retrieve the magnetic flux at the same positions as the mesh’s nodes.

In fig. 4.11 we reproduce the 2nd harmonic tritium scenario (w = 2w.r) as described in [46],
which is expected to be the main ICRF heating scenario in ITER. In this case, we are using a
50%/50% D-T plasma composition as well, with a magnetic field of By = 5.3 T and a plasma
density of ng = 3.5 x 10 m~3. The incident wave has a frequency of 53 MHz. Densities
of 8 x 10 m™3, as mentioned in [46], were not possible to simulate due to the necessity of
finer meshes, and the lack of computational power found in the PC running the simulations.
However, these results already show good accessibility of ICRF heating in such a potential
ITER-like scenario. This simulation was run with quadratic triangular elements and with a
vacuum layer between the plasma and the PML region. That is why fig. 4.10 plasma regions
look significantly bigger than the one in fig. 4.11.

Additionally, one of the key capabilities of a full wave code is its ability to capture relevant
physics regarding wave accessibility. As mentioned in section 2.2, cutoff regions are of special
interest as they can prevent the wave from propagating. This is of utmost importance in
tokamaks where the L-cutoff and the R-cutoff can lead the wave to an evanescent region and
avoid ICRF heating. For example in JET, in front of the antenna, where the plasma density
and magnetic field are low, the R-cutoff occurs and it was usually avoided by puffing gas
[47]. The L-cutoff is presently used in the three-ion scheme [48]. When the refractive index
(egs. (2.38) and (2.39)) has an imaginary component — that is n? < 0 —, the wave should
experience an exponential attenuation, not being able to penetrate the cutoff region. This
condition naturally depends on the incident wave frequency, plasma frequency and cyclotron
frequency. This happens when P = 0 for an ordinary wave and when R = 0 or L = 0
for an extraordinary wave. As shown in figs. 4.12 and 4.13 our code is able to reproduce
these important physics for the ordinary wave; and most importantly, for both cutoffs of the
extraordinary wave. All three cases correspond to a homogeneous plasma (i.e. no varying
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density and magnetic field), with a vacuum gap between itself and the wall. In figs. 4.13a
and 4.13b we have a 2 species plasma, while magnetic field and density are By = 2.7T and
no = 2 x 1017m=3 for the L cutoff, and magnetic field and density are By = 0.1 mT and
ny = 2 x 10" m=3 for the R cutoff. Up to now, resonance conditions have not been analysed
as the cold plasma permittivity tensor is not able to properly describe resonances and will be

left for future work.
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Figure 4.12: E'** field for ordinary wave w < w,, cutoff.
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Figure 4.13: The extraordinary wave is unable to propagate when nx ~ 0.
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Chapter 5

Conclusions and Future Work

The development of the MAXWEL code has resulted in a first version of a FEM software being
able to simulate the dispersion of a monochromatic plane wave in a dielectric or a cold plasma
medium in a 2D domain. Several geometries have been used; such as circular domains, a
particular tokamak cross-section configuration, and others. MAXWEL features the capability
to process different types of elements, such as a combination of linear and quadratic order but
also either triangular or quadrilateral shapes. The results have been successfully tested and
benchmarked with software extracted from literature [21] and with ERMES [44]. Furthermore,
we observe that the code captures the physics correctly for the cold plasma approximation, in
addition to showing the cutoff behaviour as expected.

The capability of integrating the results of EQUILI, by generating the tokamak mesh in which
some of the simulations took place, shows the potential compatibility between modules. This
project aims towards an integrated modelling between all modules in fig. 1.6, in order to
simulate a digital twin of a fully working tokamak reactor. One of the first steps to achieve
that, and the main goal for the near future is to parallelise the code and migrate it to Alya
[23, 24]. This would allow us to benefit from the huge computational capability of Marenostrum
5. Additionally, there is a strong interest in solving a more general vector wave equation, in
which we would need 3D edge elements to represent correctly the new computational domain.
Also, the cold plasma model may be valid as a first approximation to retrieve certain insights
such as the wave accessibility; but is not accurate enough to simulate wave and wave-particle
resonances, needed to account for wave damping and plasma power absorption. In the future,
we would need to implement a hot plasma model, taking into account the heating effects and
the particles’ distribution function. Further development and case analysis will be performed
during a future PhD program.
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Bibliography

[1]

2]

8]

[4]

[5]

California Independent System Operator. Library | Market reports | California 1ISO, 2024.
URL https://www.caiso.com/library/market-reports

J. P. Freidberg. Plasma Physics and Fusion Energy. Cambridge University Press,
Cambridge, 2007. ISBN 978-0-521-73317-5. URL http://dx.doi.org/10.1017/
CB09780511755705

F. F. Chen. Plasma Applications. In F. F. Chen, editor, Introduction to Plasma Physics
and Controlled Fusion, pp. 355—411. Springer International Publishing, Cham, 2016. ISBN
978-3-319-22309-4. URL http://dx.doi.org/10.1007/978-3-319-22309-4_10

M. B. Chadwick, M. Herman, P. ObloZinsky, M. E. Dunn, Y. Danon, A. C. Kahler, D. L.
Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D. A. Brown, R. Capote, A. D.
Carlson, Y. S. Cho, H. Derrien, K. Guber, G. M. Hale, S. Hoblit, S. Holloway, T. D.
Johnson, T. Kawano, B. C. Kiedrowski, H. Kim, S. Kunieda, N. M. Larson, L. Leal,
J. P. Lestone, R. C. Little, E. A. McCutchan, R. E. MacFarlane, M. Maclnnes, C. M.
Mattoon, R. D. McKnight, S. F. Mughabghab, G. P. A. Nobre, G. Palmiotti, A. Palumbo,
M. T. Pigni, V. G. Pronyaev, R. O. Sayer, A. A. Sonzogni, N. C. Summers, P. Talou,
|. J. Thompson, A. Trkov, R. L. Vogt, S. C. van der Marck, A. Wallner, M. C. White,
D. Wiarda, and P. G. Young. ENDF/B-VII.1 Nuclear Data for Science and Technology:
Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data
Sheets, 112 (2011) (12) 2887-2996. ISSN 0090-3752. URL http://dx.doi.org/10.
1016/j.nds.2011.11.002

D. A. Brown, M. B. Chadwick, R. Capote, A. C. Kahler, A. Trkov, M. W. Herman,
A. A. Sonzogni, Y. Danon, A. D. Carlson, M. Dunn, D. L. Smith, G. M. Hale, G. Ar-
banas, R. Arcilla, C. R. Bates, B. Beck, B. Becker, F. Brown, R. J. Casperson, J. Con-
lin, D. E. Cullen, M. A. Descalle, R. Firestone, T. Gaines, K. H. Guber, A. |. Hawari,
J. Holmes, T. D. Johnson, T. Kawano, B. C. Kiedrowski, A. J. Koning, S. Kopecky,
L. Leal, J. P. Lestone, C. Lubitz, J. I. Marquez Damidn, C. M. Mattoon, E. A. Mc-
Cutchan, S. Mughabghab, P. Navratil, D. Neudecker, G. P. A. Nobre, G. Noguere,
M. Paris, M. T. Pigni, A. J. Plompen, B. Pritychenko, V. G. Pronyaev, D. Roubtsov,
D. Rochman, P. Romano, P. Schillebeeckx, S. Simakov, M. Sin, |. Sirakov, B. Sleaford,
V. Sobes, E. S. Soukhovitskii, |. Stetcu, P. Talou, I. Thompson, S. van der Marck,
L. Welser-Sherrill, D. Wiarda, M. White, J. L. Wormald, R. Q. Wright, M. Zerkle,
G. Zerovnik, and Y. Zhu. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Re-
action Data Library with CIELO-project Cross Sections, New Standards and Thermal
Scattering Data. Nuclear Data Sheets, 148 (2018) 1-142. ISSN 0090-3752. URL
http://dx.doi.org/10.1016/j.nds.2018.02.001

47


https://www.caiso.com/library/market-reports
http://dx.doi.org/10.1017/CBO9780511755705
http://dx.doi.org/10.1017/CBO9780511755705
http://dx.doi.org/10.1007/978-3-319-22309-4_10
http://dx.doi.org/10.1016/j.nds.2011.11.002
http://dx.doi.org/10.1016/j.nds.2011.11.002
http://dx.doi.org/10.1016/j.nds.2018.02.001

48

[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

Bibliography

F. F. Chen. Introduction to Plasma Physics and Controlled Fusion. Springer International
Publishing, Cham, 2016. ISBN 978-3-319-22308-7 978-3-319-22309-4. URL http://
dx.doi.org/10.1007/978-3-319-22309-4

R. Fusion. Technology. URL https://renfusion.eu/technology

J. Proll. Trapped-particle instabilities in quasi-isodynamic stellarators. Ph.D. thesis,
Ernst-Moritz-Arndt University Greifswald Faculty of Mathematics and Natural Sciences,
2014

L.-G. Eriksson, T. Hellsten, and U. Willen. Comparison of time dependent simulations
with experiments in ion cyclotron heated plasmas. Nuclear Fusion, 33 (1993) (7) 1037.
ISSN 0029-5515. URL http://dx.doi.org/10.1088/0029-5515/33/7/107

M. Brambilla. A full wave code for ion cyclotron waves in toroidal plasmas. Technical
report, Max-Planck-Institut fiir Plasmaphysik, Germany, 1996. IPP-5/66 INIS Reference
Number: 27067158

M. Jucker, J. P. Graves, W. A. Cooper, N. Mellet, T. Johnson, and S. Brunner.
Integrated modeling for ion cyclotron resonant heating in toroidal systems. Com-
puter Physics Communications, 182 (2011) (4) 912-925. ISSN 0010-4655. URL
http://dx.doi.org/10.1016/j.cpc.2010.12.028

J. Hillairet, P. Mollard, L. Colas, W. Helou, G. Urbanczyk, J.-M. Bernard, J.-M. Dela-
planche, F. Durand, N. Faure, P. Garibaldi, G. Lombard, C. Bourdelle, C. Desgranges,
E. Delmas, R. Dumont, A. Ekedahl, F. Ferlay, M. Goniche, C. Guillemaut, G. T. Hoang,
P. Maget, R. Volpe, Y. Song, Q. Yang, Z. Chen, Y. Wang, H. Xu, S. Yuan, Y. Zhao,
F. Durodie, E. Lerche, R. Ragona, N. Bertelli, M. Ono, S. Shiraiwa, V. Bobkov, C. Klep-
per, C. Lau, E. Martin, B. Lu, R. Maggiora, D. Milanesio, K. Vulliez, G. Wallace, and
W. Team. WEST actively cooled load resilient ion cyclotron resonance heating system
results. Nuclear Fusion, 61 (2021) (9) 096030. ISSN 0029-5515. Publisher: IOP Pub-
lishing, URL http://dx.doi.org/10.1088/1741-4326/ac1759

Max-Planck-Gesellschaft. ICRH. URL https://www.ipp.mpg.de/3871973/ICRH

J. Garcia, F. J. Casson, L. Frassinetti, D. Gallart, L. Garzotti, H.-T. Kim, M. Nocente,
S. Saarelma, F. Auriemma, J. Ferreira, S. Gabriellini, A. Ho, P. Huynh, K. K. Kirov,
E. Lerche, M. J. Mantsinen, V. K. Zotta, Z. Stancar, D. M. A. Taylor, D. V. Eester,
C. D. Challis, and J. E. T. Contributors. Modelling performed for predictions of fusion
power in JET DTE2: overview and lessons learnt. Nuclear Fusion, 63 (2023) (11)
112003. ISSN 0029-5515. Publisher: IOP Publishing, URL http://dx.doi.org/10.
1088/1741-4326/acedcO

D. Gallart, M. J. Mantsinen, C. Challis, D. Frigione, J. Graves, E. Belonohy, F. Casson,
A. Czarnecka, J. Eriksson, J. Garcia, M. Goniche, C. Hellesen, J. Hobirk, P. Jaquet,
E. Joffrin, N. Krawczyk, D. King, M. Lennholm, E. Lerche, E. Pawelec, X. Sdez, M. Ser-
toli, G. Sips, E. Solano, M. Tsalas, P. Vallejos, M. Valisa, and J. E. T. Contributors.
Modelling of JET hybrid plasmas with emphasis on performance of combined ICRF and
NBI heating. Nuclear Fusion, 58 (2018) (10) 106037. ISSN 0029-5515. Publisher: IOP
Publishing, URL http://dx.doi.org/10.1088/1741-4326/aad9%ad

E. Lerche, D. Van Eester, P. Jacquet, F. Casson, Y. Baranov, P. Dumortier, D. Gallart,
J. Graves, P. Huynh, T. Johnson, Y. Kazakov, V. Kiptily, K. Kirov, M. Machielsen,


http://dx.doi.org/10.1007/978-3-319-22309-4
http://dx.doi.org/10.1007/978-3-319-22309-4
https://renfusion.eu/technology
http://dx.doi.org/10.1088/0029-5515/33/7/I07
http://dx.doi.org/10.1016/j.cpc.2010.12.028
http://dx.doi.org/10.1088/1741-4326/ac1759
https://www.ipp.mpg.de/3871973/ICRH
http://dx.doi.org/10.1088/1741-4326/acedc0
http://dx.doi.org/10.1088/1741-4326/acedc0
http://dx.doi.org/10.1088/1741-4326/aad9ad

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

49

M. Mantsinen, |. Monakhov, J. Ongena, and JET Contributors. ICRH options for JET-
ILW DTE2 operation. AIP Conference Proceedings, 2254 (2020) (1) 030007. ISSN
0094-243X. URL http://dx.doi.org/10.1063/5.0013530

D. V. Eester, E. Lerche, P. Huynh, T. Johnson, D. Yadikin, S. gtancar, S. Aleiferis, D. Fri-
gione, L. Garzotti, P. Lomas, C. Lowry, M. Maslov, J. E. T. contributors, and E.-I. team.
Maximising D - T fusion power by optimising the plasma composition and beam choice
in JET. Plasma Physics and Controlled Fusion, 64 (2022) (5) 055014. ISSN 0741-3335.
Publisher: 10P Publishing, URL http://dx.doi.org/10.1088/1361-6587/ac5a09

D. Gallart, M. J. Mantsinen, J. Manyer, E. Planas, D. M. A. Taylor, J. Garcia, D. Frigione,
L. Garzotti, H.-T. Kim, M. Nocente, F. Rimini, D. V. Eester, and J. E. T. Contributors.
Prediction of ICRF minority heating schemes for JET D-T experiments. Plasma Physics
and Controlled Fusion, 64 (2022) (12) 125006. ISSN 0741-3335. Publisher: 10P Pub-
lishing, URL http://dx.doi.org/10.1088/1361-6587/ac9925

K. K. Kirov, Y. Kazakov, M. Nocente, J. Ongena, Y. Baranov, F. Casson, J. Eriksson,
L. Giacomelli, C. Hellesen, V. Kiptily, R. Bilato, K. Crombe, R. Dumont, P. Jacquet,
T. Johnson, E. Lerche, M. Mantsinen, D. V. Eester, J. Varje, H. Weisen, and JET
Contributors. Synergistic ICRH and NBI heating for fast ion generation and maximising
fusion rate in mixed plasmas at JET. AIP Conference Proceedings, 2254 (2020) (1)
030011. ISSN 0094-243X. URL http://dx.doi.org/10.1063/5.0014235

P. Huynh, E. A. Lerche, D. V. Eester, J. Garcia, T. Johnson, J. Ferreira, K. K. Kirov,
D. Yadykin, P. Strand, J. E. T. Contributors, and t. E.-I. Team. European transport
simulator modeling of JET-ILW baseline plasmas: predictive code validation and DTE2
predictions. Nuclear Fusion, 61 (2021) (9) 096019. ISSN 0029-5515. Publisher: 10P
Publishing, URL http://dx.doi.org/10.1088/1741-4326/ac0b34

0. (")zgijn and M. Kuzuoglu. MATLAB-based Finite Element Programming in Electro-
magnetic Modeling. CRC Press, 1st edition edition, 2018

J. Jin. The Finite Element Method in Electromagnetics. |IEEE Press. Wiley, 2015. ISBN
9781118842027. URL https://books.google.es/books?id=DFi-BgAAQBAJ

BSC CASE department. bsc-alya - GitLab, 2022. URL https://gitlab.com/bsc-alya

M. Véazquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra, R. Aris, D. Mira,
H. Calmet, F. Cucchietti, H. Owen, A. Taha, E. D. Burness, J. M. Cela, and M. Valero.
Alya: Multiphysics engineering simulation toward exascale. Journal of Computational
Science, 14 (2016) 15-27. ISSN 1877-7503. URL http://dx.doi.org/10.1016/j.
jocs.2015.12.007

A. Gutierrez-Milla, M. Mantsinen, M. Avila, G. Houzeaux, C. Riera-Auge, and X. Sdez.
New high performance computing software for multiphysics simulations of fusion reactors.
Fusion Engineering and Design, 136 (2018) 639-644. ISSN 0920-3796. URL http:
//dx.doi.org/10.1016/j.fusengdes.2018.03.045

E. Goldberg, M. C. i. Duxans, O. O. Gelabert, M. J. Mantsinen, and A. Soba. Validating
NEUTRO, a deterministic finite element neutron transport solver for fusion applications,
with literature tests, experimental benchmarks and other neutronic codes. Plasma Physics
and Controlled Fusion, 64 (2022) (10) 104006. ISSN 0741-3335. Publisher: IOP Pub-
lishing, URL http://dx.doi.org/10.1088/1361-6587/ac8acd


http://dx.doi.org/10.1063/5.0013530
http://dx.doi.org/10.1088/1361-6587/ac5a09
http://dx.doi.org/10.1088/1361-6587/ac9925
http://dx.doi.org/10.1063/5.0014235
http://dx.doi.org/10.1088/1741-4326/ac0b34
https://books.google.es/books?id=DFi-BgAAQBAJ
https://gitlab.com/bsc-alya
http://dx.doi.org/10.1016/j.jocs.2015.12.007
http://dx.doi.org/10.1016/j.jocs.2015.12.007
http://dx.doi.org/10.1016/j.fusengdes.2018.03.045
http://dx.doi.org/10.1016/j.fusengdes.2018.03.045
http://dx.doi.org/10.1088/1361-6587/ac8acd

50

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[30]

[37]

[38]

[39]

Bibliography

A. Soba, O. Fernandez-Serracanta, J. Lorenzo, D. Garcin, G. Houzeaux, N. Lamas,
X. Granados, and M. J. Mantsinen. A high-performance electromagnetic code to simulate
high-temperature superconductors. Fusion Engineering and Design, 201 (2024) 114282.
ISSN 0920-3796. URL http://dx.doi.org/10.1016/j.fusengdes.2024.114282

P. Manyer Fuertes, A. Soba Pascual, and D. Gallart Escola. EQUILI module in ALYA:
a free-boundary Grad-Shafranov equation solver using CutFEM. 1I1th International
BSC Severo Ochoa Doctoral Symposium 2024, (2024) 50-51. Publisher: Barcelona
Supercomputing Center, URL https://wuw.bsc.es/sites/default/files/public/
11thBSCDS_BoA.pdf

D. Gallart Escola. Computational analysis of ion cyclotron resonance frequency heating for
JET experiments. Doctoral thesis, Universitat Politecnica de Catalunya, 2019. Accepted:
2020-09-06T00:01:26Z Publication Title: TDX (Tesis Doctorals en Xarxa), URL http:
//dx.doi.org/10.5821/dissertation-2117-328426

D. G. Swanson. Plasma Waves. CRC Press, Boca Raton, 2 edition, 2003. ISBN 978-0-
367-80272-1. URL http: //dx.doi. org/lO .1201/9780367802721

T. H. Stix. The theory of plasma waves. McGraw-Hill advanced physics monograph
series. McGraw-Hill, New York, 1962. OCLC: 612645976, URL http://books.google.
com/books?id=qBYvAAAATAAJ

M. Mantsinen. Development and experimental evaluation of theoretical models for ion
cyclotron resonance frequency heating of tokamak plasmas. Ph.D. thesis, Vaitoskirja,
Espoo, 1999. Tiivistelma ja 6 erip., URL https://www.finna.fi/Record/jykdok.
805376

M. Porkolab, A. Bécoulet, P. T. Bonoli, C. Gormezano, R. Koch, R. J. Majeski, A. Mes-
siaen, J. M. Noterdaeme, C. Petty, R. Pinsker, D. Start, and R. Wilson. Recent progress
in ICRF physics. Plasma Physics and Controlled Fusion, 40 (1998) (8A) A35. URL
http://dx.doi.org/10.1088/0741-3335/40/8A/004

A. Hrennikoff. Solution of Problems of Elasticity by the Framework Method. Journal of
Applied Mechanics, 8 (2021) (4) A169-A175. ISSN 0021-8936. URL http://dx.doi.
org/10.1115/1.4009129

R. Courant. Variational methods for the solution of problems of equilibrium and vibrations.
Bulletin of the American Mathematical Society, 49 (1943) (1) 1-23. ISSN 0002-9904,
1936-881X. URL http://dx.doi.org/10.1090/S0002-9904-1943-07818-4

The Efficient Engineer. Understanding the Finite Element Method, 2021. URL https:
//efficientengineer.com/finite-element-method/

K.-J. Bathe. Finite Element Procedures. Klaus-Jurgen Bathe, 2006. ISBN 978-0-9790049-
0-2. Google-Books-ID: rWvefGICfO8C

J. N. Reddy. Introduction to the Finite Element Method. McGraw-Hill Educa-
tion, 4th edition edition, 2019. ISBN 978-1-259-86190-1. URL https://www.
accessengineeringlibrary.com/content/book/9781259861901

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of research of the National Bureau of Standards, 49 (1952) 409-435. URL
https://api.semanticscholar.org/CorpusID:2207234


http://dx.doi.org/10.1016/j.fusengdes.2024.114282
https://www.bsc.es/sites/default/files/public/11thBSCDS_BoA.pdf
https://www.bsc.es/sites/default/files/public/11thBSCDS_BoA.pdf
http://dx.doi.org/10.5821/dissertation-2117-328426
http://dx.doi.org/10.5821/dissertation-2117-328426
http://dx.doi.org/10.1201/9780367802721
http://books.google.com/books?id=qBYvAAAAIAAJ
http://books.google.com/books?id=qBYvAAAAIAAJ
https://www.finna.fi/Record/jykdok.805376
https://www.finna.fi/Record/jykdok.805376
http://dx.doi.org/10.1088/0741-3335/40/8A/004
http://dx.doi.org/10.1115/1.4009129
http://dx.doi.org/10.1115/1.4009129
http://dx.doi.org/10.1090/S0002-9904-1943-07818-4
https://efficientengineer.com/finite-element-method/
https://efficientengineer.com/finite-element-method/
https://www.accessengineeringlibrary.com/content/book/9781259861901
https://www.accessengineeringlibrary.com/content/book/9781259861901
https://api.semanticscholar.org/CorpusID:2207234

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

51

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes:
the art of scientific computing. Cambridge University Press, Cambridge [Cambridgeshire],
1986. ISBN 978-0-521-30811-3. OCLC: 1036772065, URL https://archive.org/

details/numericalrecipesOOpres

B. Delaunay. Sur la sphere vide. A la mémoire de Georges Voronoi. [zvestija Rossijskoj
akademii nauk. Serija matematiteskaja, (1934) (6) 793-800

A. Melendo, A. Coll, M. Pasenau, E. Escolano, and A. Monros. www.gidhome.com, 2018.
[Online; accessed Aug-2024], URL www.gidsimulation.com

O. Ozgiin and M. Kuzuoglu. Non-Maxwellian Locally-Conformal PML Absorbers for
Finite Element Mesh Truncation. IEEE Transactions on Antennas and Propagation, 55
(2007) (3) 931-937. ISSN 1558-2221. Conference Name: IEEE Transactions on Antennas
and Propagation, URL http://dx.doi.org/10.1109/TAP.2007.891865

R. Otin. ERMES: A nodal-based finite element code for electromagnetic simulations in
frequency domain. Computer Physics Communications, 184 (2013) (11) 2588-2595.
ISSN 0010-4655. URL http://dx.doi.org/10.1016/3.cpc.2013.06.010

J. Ahrens, B. Geveci, and C. Law. ParaView: An End-User Tool for Large Data Visual-
ization. In Visualization Handbook. Elesvier, 2005. ISBN 978-0123875822

M. Mantsinen, P. Jacquet, E. Lerche, D. Gallart, K. Kirov, P. Mantica, D. Taylor, D. V.
Eester, M. Baruzzo, |. Carvalho, C. Challis, A. D. Molin, E. Delabie, E. D. L. Luna,
R. Dumont, P. Dumortier, J. Eriksson, D. Frigione, J. Garcia, L. Garzotti, C. Giroud,
R. Henriques, J. Hobirk, A. Kappatou, Y. Kazakov, D. Keeling, D. King, V. Kiptily,
M. Lennholm, P. Lomas, C. Lowry, C. Maggi, J. Mailloux, M. Maslov, S. Menmuir,
|. Monakhov, R. Morales, C. Noble, M. Nocente, A. Patel, G. Pucella, C. Reux, D. Rig-
amonti, F. Rimini, A. Sheikh, S. Silburn, P. Siren, E. Solano, Z. Stancar, M. Tardocchi,
and J. Contributors. Experiments in high-performance JET plasmas in preparation of sec-
ond harmonic ICRF heating of tritium in ITER. Nuclear Fusion, 63 (2023) (11) 112015.
URL http://dx.doi.org/10.1088/1741-4326/aceb08

W. Zhang, P. Jacquet, E. Lerche, R. Bilato, V. Bobkov, D. Coster, Y. Feng, C. Guillemaut,
M. Goniche, D. Harting, T. Lunt, J.-M. Noterdaeme, G. Szepesi, D. V. Eester, and t. J.
Contributors. 3D simulations of gas puff effects on edge plasma and ICRF coupling in
JET. Nuclear Fusion, 57 (2017) (5) 056042. ISSN 0029-5515. Publisher: IOP Publishing,
URL http://dx.doi.org/10.1088/1741-4326/2a6817

Y. O. Kazakov, D. V. Eester, R. Dumont, and J. Ongena. On resonant ICRF absorption
in three-ion component plasmas: a new promising tool for fast ion generation. Nuclear
Fusion, 55 (2015) (3) 032001. ISSN 0029-5515. Publisher: IOP Publishing, URL http:
//dx.doi.org/10.1088/0029-5515/55/3/032001


https://archive.org/details/numericalrecipes00pres
https://archive.org/details/numericalrecipes00pres
www.gidsimulation.com
http://dx.doi.org/10.1109/TAP.2007.891865
http://dx.doi.org/10.1016/j.cpc.2013.06.010
http://dx.doi.org/10.1088/1741-4326/aceb08
http://dx.doi.org/10.1088/1741-4326/aa6817
http://dx.doi.org/10.1088/0029-5515/55/3/032001
http://dx.doi.org/10.1088/0029-5515/55/3/032001

52

Bibliography



Appendix A

Other cases and figures generated

Some of the figures mentioned in section 4.2 and others are shown here. All the cases tested
present excellent accordance with the literature, but they are essentially similar to the ones
included in the main body of the manuscript.
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(a) H® amplitude distribution. (b) H°* amplitude distribution.

Figure A.1: TE polarisation with €,. = 4, simulated with MAXWEL.
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54 A. Other cases and figures generated
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(a) H5®* amplitude distribution. (b) HE°* amplitude distribution.

Figure A.2: TE polarisation with €,. = 4, extracted from [21].
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(a) E5°% amplitude distribution. (b) EY' amplitude distribution.
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Figure A.3: TM polarisation with €,. = 4, simulated with MAXWEL.
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(a) E5% amplitude distribution. (b) Et°t amplitude distribution.

Figure A.4: TM polarisation with €,. = 4, extracted from [21].
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(a) H5® amplitude distribution. (b) HE°* amplitude distribution.

Figure A.5: TE polarisation with €., = 4 and ¢,, =9, simulated with MAXWEL.
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A. Other cases and figures generated
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(a) HE® amplitude distribution. (b) H" amplitude distribution.

Figure A.6: TE polarisation with ¢, = 4 and ¢,,, = 9, extracted from [2]].



Appendix B

Different geometries

Here we present some different geometries that have been tested in MAXWEL. If any arbitrary
mesh is generated correctly it can be fed to the program. These cases represents a 300 MHz
wave in a dielectric material with €,, =4 and ¢, = 9.
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Figure B.1: Semicircular geometry.
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B. Different geometries
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(a) Mesh for an elliptical shaped dielectric. (b) H:" field amplitude.

Figure B.2: Elliptical geometry.
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(a) Mesh for a triangular-shaped dielectric. (b) H" field amplitude.

Figure B.3: Triangular geometry. In this case, the angle of incidence was ¢ = g



Appendix C

In-plane fields

As mentioned in section 4.1.4, we are able to compute the first derivatives of our solution. Con-
sequently, the complementary field in the zy plane can be derived using egs. (4.2) and (4.3). In
figs. C.1a and C.1b it is shown the Re (E'°") and Im (E"'®") respectively. The case correspond
to a TE polarised plane wave of 300 MHz and a dielectric of £,, =9 and ¢, = 4. In fig. C.2
it is presented the same case as in section 4.2.2, since it was of great relevance to benchmark
our results.

2.6e+02
[ 200

— 1580

gnitude

— 100

Eimag_tot Magnitude

Ereal_tot Ma

0.0e+00 0.0e+00

(a) Real component of E'°". (b) Imaginary component of E'°t.
Figure C.1: E'°* field superposed with the H!* component. The in-plane field is represented

as a vector, indicating the magnitude and orientation in the plane.

In fig. C.3, the case corresponds to a TE polarised plane wave of 400 MHz propagating through
a cold plasma of By = 0.1 T and ng = 10 m™3. It is shown only the derivatives from eq. (4.3),
without the constants and permittivity tensor multiplication, due to normalisation reasons.
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Figure C.2: Cold plasma case as in section 4.2.2, used to benchmark our code with the results
provided by ERMES.
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Figure C.3: Re-normalised in-plane fields.
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