
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics of Data

Final Dissertation

AI-accelerated solution of Maxwell’s equations for the

simulation of high-temperature superconductors

dedicated to nuclear fusion

Thesis supervisors Candidate

Prof. Dr. Mervi Mantsinen Diego Bonato

Prof. Lidia Piron

Dr. Eduardo Cabrera Flores

Academic Year 2024/2025





Contents

1 High-temperature superconductors for fusion andMAGNET 3

1.1 An overview of Electromagnetism . . . . . . . . . . . . . . . . 4

1.2 Superconductivity and MAGNET modelling . . . . . . . . . . 7

1.3 ALYA and MareNostrum 5 . . . . . . . . . . . . . . . . . . . 9

2 Scientific Machine Learning 11

2.1 Introduction to deep learning and neural networks . . . . . . . 12

2.2 SciML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Physics Informed Neural Networks . . . . . . . . . . . . . . . 21

2.4 Neural Operators . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Fourier Neural Operator . . . . . . . . . . . . . . . . . 28

2.5 Vision Transformer and Adaptive Fourier Neural Operator . . 29

3 Methodology 34

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Dataset creation, management and analysis . . . . . . . . . . . 35

3.2.1 Dataset creation . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Data management . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Dataset statistics - exploratory analysis . . . . . . . . . 41

3.3 General methodology for model selection . . . . . . . . . . . . 45

3.4 Processing pipeline . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Training pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Training strategy . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Learning framework . . . . . . . . . . . . . . . . . . . . 51

3



Contents Contents

4 Results 55

5 Conclusions and future works 74

Bibliography 77

4



Abstract

High-temperature superconductors (HTS) are a key enabler for the next gen-

eration of nuclear fusion reactors, thanks to their ability to sustain high mag-

netic fields while reducing power consumption. However, accurately modeling

their electromagnetic behavior requires solving Maxwell’s equations through

computationally expensive numerical simulations. In this work, we propose

an AI-accelerated approach to solving Maxwell’s equations for HTS mate-

rials, leveraging state-of-the-art deep learning techniques. Specifically, we

train an Adaptive Fourier Neural Operator (AFNO) and a Fourier Neural

Operator (FNO) on a dataset generated using MAGNET, a finite-element

solver developed at the Barcelona Supercomputing Center. We obtain an AI

model that can predict the magnetic field evolution on a coarse time grid,

in a completely unsupervised way. This approach opens new possibilities for

integrating AI-based surrogate models into large-scale fusion simulations, po-

tentially enabling real-time digital twins for superconducting magnet design.



Introduction

Recent years have seen a renewed interest in nuclear fusion as a possible

source of clean energy for the upcoming future. Many countries are now di-

recting a lot of funding towards research institutes and big public enterprises

like ITER, not to mention the growing landscape of private start-ups that are

entering the market of nuclear fusion for energy. The current run for achiev-

ing this scientific goal is mainly driven by new technological advancements

involving magnetic confinement devices, like tokamaks, which are considered

to be the most promising configurations for a future fusion reactor. In partic-

ular, the breakthrough brought by type-II high-temperature superconductors

(HTS) is veering many efforts towards the study of their implementations for

large toroidal coils in these devices.

To characterise the behaviour of these materials, large numerical simulations

are required, which are usually very expensive and resource-intensive. This

is a situation that is now widespread in all areas of science, where costly sim-

ulations are a fundamental tool to explore new phenomena and benchmark

models. An increasingly important aid in this respect is being provided by

the field of Scientific Machine Learning (SciML). Thanks to the recent ad-

vancements in deep learning (DL), literature is now flourishing with new

artificial intelligence (AI) tools, as means to integrate traditional numerical

solvers with data-driven surrogate models.
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Problem statement

Given these premises, the scope of this thesis is to apply a state-of-the-art DL

algorithm to speed-up numerical simulations of HTS materials. In particu-

lar, we focus on solving Maxwell’s equations for a section of a superconduct-

ing current-carrying wire, in the infinitely long approximation. We create a

dataset of high-fidelity numerical simulations, comprising a variety of materi-

als, initial and boundary conditions. We develop an AI surrogate model that

autonomously evolves these systems in a fully unsupervised manner, requir-

ing only the initial solution as a starting point. As will be described more in

details in the later sections, we train an Adaptive Fourier Neural Operator

(AFNO) on a dataset created with MAGNET, a Maxwell’s equations numer-

ical solver developed by the Fusion group at the Barcelona Supercomputing

Center. As far as the authors are aware of, this is the first time models based

on neural operators are used to speed-up simulations of HTS.

This thesis is laid out as follows. Chapter 1 gives some theoretical basis

about HTS, that will be needed to understand the data produced by MAG-

NET. Chapter 2 presents a small introduction to DL and briefly reviews the

literature concerning SciML, focusing on Neural Operators. Chapter 3 fol-

lows, where we detail the methodology and techniques used to develop the

AI algorithm. Finally, results are presented in chapter 4. Conclusions and

future works are displayed in chapter 5.
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Chapter 1

High-temperature

superconductors for fusion and

MAGNET

High-temperature superconductors (HTS) are playing a fundamental role in

the advancement of research on fusion reactors. For this reason, the Fusion

group at the Barcelona Supercomputing Center has developed MAGNET [1],

a Maxwell’s equations numerical solver based on finite-element methods, that

simulates the behaviour of different HTS materials. The code is integrated

into ALYA, a framework focused on achieving high scalability and perfor-

mance for multi-physics simulations on large-scale supercomputers.

The goal of the present chapter is to give the reader the key tools to un-

derstand what MAGNET does and the data that it produces, which will be

eventually used to train the AI algorithm. To this end, we first present an

overview of the physics behind HTS, then move our focus on the computation

performed by MAGNET.
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Chapter 1. High-temperature . . . 1.1. An overview of Electromagnetism

1.1 An overview of Electromagnetism

The macroscopic electromagnetic behaviour of media is described by Maxwell’s

equations:

∇ ·D = Äf ,

∇ ·B = 0,

∇× E = −∂B

∂t
,

∇×H = Jf +
∂D

∂t
.

(1.1)

where H is the external magnetic field and B is the magnetic flux density.

The two are linked through the definition of the magnetization M via the

following equation:

B = µ0(H+M) (1.2)

where µ0 is the vacuum magnetic permeability, with µ0 = 4Ã × 10−7 H/m.

Moreover, the electric displacement D is given by the following equation,

where E is the electric field, P is the polarization vector, and ϵ0 =
1

µ0·c
is the

vacuum permittivity (ϵ0 ≈ 8.854× 10−12 F ·m−1, and c is the speed of light

in vacuum).

D = E · ϵ0 +P (1.3)

The magnetization M and the polarization P can be seen as the response of

the material to an external magnetic and electric field, respectively.

Finally, we need to consider the currents and charge densities. In a vac-

uum, all charges and currents are free, but in a medium, some charges are

intrinsic to the material and are bound (Äb). Other charges are free and can

move while maintaining electrostatic equilibrium; these are denoted as Äf in
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Chapter 1. High-temperature . . . 1.1. An overview of Electromagnetism

equation (1.1). The total charge density is the sum of these two components.

We can use these definitions to give a relation between the currents, the

magnetic field, and the magnetization:

∇×H = Jf

∇×M = Jb

∇×B = µ0(Jf + Jb)

Furthermore, we can introduce the notion of magnetic susceptibility Çm,

defined by

M = ÇmH

This susceptibility reflects the material’s responsiveness to an external mag-

netic field; the greater the susceptibility, the higher the magnetization in-

duced in the material by the magnetic field.

At this point, we can use the latter definitions to obtain a direct relationship

between B and H,

B = µ0(H+M) = µ0(1 + Çm)H = µ0µrH = µH (1.4)

where µr is the relative permeability of the material, and µ = µ0µr is the

absolute permeability. This relationship shows how the magnetic field B

depends on both the applied field H and the material’s magnetization M,

with the material’s properties encapsulated in the permeability µ.

A similar approach can be taken to describe the behavior of electric fields in

media. In this case, the electric displacement field D is defined by equation

(1.3). Analogously to the relationship between B and H, the polarization
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vector P can be expressed in terms of the electric susceptibility Çe:

P = ϵ0ÇeE.

By substituting this relation into the equation for 1.3 we obtain:

D = ϵ0(1 + Çe)E = ϵ0ϵrE = ϵE,

where ϵr = 1 + Çe is the relative permittivity of the material, and ϵ = ϵ0ϵr

is the absolute permittivity. The latter equation shows how the material

modifies the applied electric field, resulting in the electric displacement field

D.

Also, a relation between the polarization and the divergence of the field can

be given.

∇ ·D = Äf

∇ ·P = −Äb

∇ · E =
Äf + Äb

ϵ0

Finally, given the current density j and the magnetic field B, the Lorentz

force per unit volume can be computed:

F = j×B (1.5)
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1.2 Superconductivity and MAGNET mod-

elling

Superconductivity refers to a macroscopic electromagnetic phenomenon in

which the resistance of materials drops to zero below a certain temperature

and all the external magnetic fields are repelled at the same time [2]. Con-

duction is a fundamental property of materials, governed by their ability to

transport electrical current. Conductivity, denoted Ã, spans an extensive

range, from excellent conductors like copper (1.77× 10−8Ω ·m) to insulators

such as glass (∼ 1014Ω ·m). Mathematically, conductivity relates the current

density J to the electric field E:

J = ÃE. (1.6)

In superconductors, this relationship changes drastically, as they exhibit zero

resistivity below a critical temperature Tc. This phenomenon enables per-

sistent current without energy dissipation, a remarkable deviation from con-

ventional conductive behaviour.

Superconductivity depends on specific conditions defined by three critical

parameters:

• Critical Temperature (Tc): The maximum temperature at which a

material remains superconducting.

• Critical Current Density (Jc): The highest current density a su-

perconductor can carry without losing its superconducting state.

• Critical Magnetic Field (Bc): The threshold magnetic field beyond

which superconductivity is destroyed.

Above these critical limits, the material reverts to its normal resistive state.

Superconductors can be divided into two main groups according to their Crit-

ical Temperature. On one hand, we have Low-Temperature Superconductors
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(LTS), which exhibit a superconducting behaviour only at temperatures be-

low 77 K, the boiling point of liquid nitrogen. These are mainly metals and

alloys and are cooled with liquid Helium. On the other hand, all material

that have superconducting properties at temperature above 77K are called

High-Temperature Superconductors (HTS). HTS have many properties that

make them more suitable for fusion applications. First of all, they can be

cooled down using liquid nitrogen, which is cheaper and easier to obtain

than liquid helium [1]. Secondly, as they operate at higher temperatures

with respect to LTS, they would require less power to be refrigerated in a

cryogenic system used in a fusion plant like ITER. Moreover, HTS materials

can achieve significantly higher magnetic fields compared to LTS, with RE-

BCO being the most promising one for fusion applications [3]. For example,

HTS coils have enabled magnetic fields up to 45.5 T in laboratory settings,

which is critical for compact and high-performance fusion devices [4]. This

allows also for more compact magnet designs, enabling smaller and more

efficient fusion reactors.

The two most common constitutive models used to link the electric field E

and current density J in superconductors are the critical state model (CSM)

and the eddy current model (ECM). In the CSM, a non-zero E within the

superconductor induces J in the same direction and with a magnitude equal

to the local critical current density Jc. This model provides a foundation

for predicting key characteristics of HTS materials and devices, such as the

distributions of current density and magnetic field profiles. On the other

hand, a smooth power law dependence is assumed in the ECM, namely

E =
Ec

Jc

( |J |
Jc

)n−1

J (1.7)

The critical electric field Ec, typically around 10−4 V/m, and the parame-

ter n characterize the vortex flux creep, which reduces the penetration of

field lines into the material. The n value is determined by the superconduc-

tor’s nonlinear current-voltage relationship and generally ranges from 5 to
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30, depending on the material properties [5]. The J-E relationship shows

good adaptability to different materials, as n = 1 corresponds to Ohm’s law,

while n → ∞ represents the critical state model (CSM). This widely-used

framework in the community has been adopted in MAGNET. To compute

the resistivity in equation (1.9), MAGNET uses the following expression:

Ä =
Ec

Jc

( |∇ ×H|
Jc

)n−1

(1.8)

Building on this theoretical foundation, MAGNET numerically solves Maxwell’s

equations in the H-formulation, which is a common choice when dealing with

HTS simulations. It can be shown that equations (1.1) are equivalent to

µ0∂tH+∇× Ä∇×H = 0 (1.9)

where Ä is the resistivity of the media.

Solving this equation, MAGNET produces as an output the values of the x, y,

and z-components of the magnetic field for each time step of the simulation.

1.3 ALYA and MareNostrum 5

MAGNET is a module developed as part of the broader ALYA framework, a

software created by the Computer Applications in Science and Engineering

department (CASE) at the Barcelona Supercomputing Center. ALYA is

based on finite-element methods to solve multiphysics problems and designed

to run with high efficiency in an HPC infrastructure [6].

In particular, the Fusion group aims at developing a digital twin of a fusion

reactor, and has already developed two modules integrated in ALYA, NEU-

TRO and MAGNET, that simulate neutron transport and HTS materials,

respectively. More modules are being developed to completely character-

ize the plasma state in a fusion reactor, starting from plasma equilibrium,

to wave propagation in hot plasma, while also study breeding blankets and
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Component Details
Node Types MareNostrum 5 GPP (General Purpose Partition)
Total Nodes 6,192
Processors 2x Intel Xeon Platinum 8480+ 56C 2GHz
Main Memory 16x DIMM 16GB 4800MHz DDR5
Local Storage 960GB NVMe
Network 100Gb/s bandwidth per node)
Total Compute Units 726,880

Table 1.1: MareNostrum 5 general purpose partition specifications

Component Details
Node Type MareNostrum 5 ACC (Accelerated Partition)
Total Nodes 1,120 nodes
Processors 2x Intel Xeon Platinum 8460Y+ 40C 2.3GHz (80 cores per node)
GPUs 4x NVIDIA Hopper H100 64GB HBM2
Main Memory 16x DIMM 32GB 4800MHz DDR5 (512GB per node)
Local Storage 480GB NVMe
Network 800Gb/s bandwidth per node
Total Compute Units 680,960 (CPUs + GPUs)

Table 1.2: MareNostrum 5 accelerated partition specifications

plasma disruptions using magneto hydrodynamics.

This work has been developed using MareNostrum 5, a pre-exascale Eu-

roHPC supercomputer that combines Lenovo ThinkSystem SD650 V3 and

Eviden BullSequana XH3000 architectures, providing two partitions with

different technical characteristics [7]. The first is called General Purpose

Partition (GPP), which is used to perform CPU-bounded tasks, like parallel

numerical simulations. In total, the GPP counts of 726,880 processor cores

and 1.75PB of main memory. The second partition is the Accelerate Partition

(ACC), made of 1,120 nodes based on Intel Xeon Sapphire Rapids proces-

sors and NVIDIA Hopper GPUs, which amount to a total (CPUs + GPUs)

of 680,960 compute units. The properties for each node are summarised in

tables 1.1 and 1.2. MareNostrum 5 has a total storage capacity of 650 PB,

with each group using the machine allocated a specific quota. The CASE

department has been assigned 1171.87 TB, of which 1104.22 TB is currently

in use at the time of writing.
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Chapter 2

Scientific Machine Learning

The aim of this chapter is to delineate the general theoretical framework

needed by a non-expert reader to understand the context in which the present

work is set.

First, we present a basic introduction to deep learning, laying out the minimal

lexicon and ideas necessary to understand how and why neural networks

work. Second, we introduce the topic of Scientific Machine Learning (SciML),

giving an overview of some of the approaches and solutions proposed in the

literature, applying artificial intelligence to physics and engineering problems.

Finally, we enter into the technical details of the models developed for this

project, describing in details the theory behind Neural Operators and Vision

Transformers. We focus on these models because they showed great results

in solving PDEs in literature. More precisely, we use as a reference the work

of Pathak et al. [8], where an Adaptive Fourier Neural Network is used

to do weather forecasting in an autoregressive manner. We build on this,

using data from MAGNET instead of meteorological data. In addition, we

compare the Adaptive Fourier Neural Network with a simple Fourier Neural

Operator. The former is an adaptation to images of the latter, so we think

it is an interesting comparison.

11
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2.1 Introduction to deep learning and neural

networks

Artificial Intelligence (AI) is a broad field of computer science that branches

into many different areas, which can vary significantly in terms of problem

setting and methods.

AI is the study of agents that process information from their environment

and take actions accordingly. Each agent operates based on a function that

maps sequences of information to specific actions. These functions can be im-

plemented through various approaches, including reactive agents, real-time

planning, decision-theoretic models, and deep learning techniques [9]. Learn-

ing plays a central role in AI, both as a means of building capable systems

and as a strategy for enabling them to adapt to unfamiliar environments be-

yond the designer’s direct specifications. AI algorithms span a wide range of

applications, including web search engines, recommendation systems, virtual

assistants, autonomous driving, and natural language processing.

Machine learning (ML) is the branch of AI that uses statistical principles

to develop algorithms that can learn to perform tasks without being explic-

itly programmed to do so. The most relevant advancements in this field is

related to deep learning, a sub-branch of ML which leverages on artificial

neural networks (NNs) to perform specific tasks directly from data. In this

section, we describe what neural networks do, what are the tasks that they

can perform and what algorithms are used to reach this goal.

The building block of a NN is the neuron. A neuron consists in a linear

operation applied to a vector, which represents our data, followed by a non-

linear function Ã, called activation function. A NN is an arrangement of

neurons that perform operations multiple times. We call an architecture

a specific arrangement of neurons. The quintessential architecture is the

Feed Forward Neural Network (FFNN), which can be represented as a direct

acyclic graph, where neurons are arranged in layers, and all the neurons of

a layer are connected to all the other neurons in the previous and following

12
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layer. Overall, the operation performed by a layer can be written as:

flayer(v) = Ã(Wv + b) (2.1)

where W is a matrix of parameters wi, which are called learnable parameters

or weights, v is an input vector representing data and b is a scalar value

called bias. The strength of the connection between neurons is given by the

learnable weight wi. Nowadays, the most used activation function is the

Rectified Linear Unit (ReLU), which takes the following form:

ReLU(x) = max(0, x) (2.2)

and is applied locally to each element of the vector, that we call x [9]. Another

important activation function is the Gaussian Error Linear Unit (GELU)

[10]:

GELU(x) = xΦ(x) (2.3)

where Φ is the cumulative Gaussian distribution, that is

GELU(x) = xP (X f x) = xΦ(x) = x · 1
2

[

1 + erf(x/
√
2)
]

(2.4)

Given an architecture, a deep learning algorithm consists in finding the op-

timal parameters wi, such that the NN can approximate, or learn, a certain

function, operator or probability distribution. For example, we could train a

NN on a dataset composed of meteorological measurements taken with a cer-

tain frequency over a certain period of time, including temperature T , pres-

sure p, and humidity h, each in their appropriate units. Also, each of these

comes with a label corresponding to a “sunny”, “cloudy” or “rainy” day. In

this case, we want the NN to approximate the function f : A → {e1, e2, e3},

13
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where

e1 =







1

0

0






, e2 =







0

1

0






, e3 =







0

0

1







represent the label “sunny”, “cloudy” and “rainy”, respectively. A ¦ R
3

is the space of vectors representing all possible combinations of the three

measurements (T, p, h).

The trained network would be a parametric approximation of f , namely fw,

made of subsequent compositions of functions flayer, such that every input

vector v representing a weather measurement gives as an output the corre-

sponding label e1 if it is a sunny day, e2 if it is a cloudy one, e3 if it is

rainy.

In order for the training to take place, a task performed by a NN needs

to be translated into an optimization problem, thus defining an objective

function that the training algorithm will minimize. This objective function

is called the loss function. For example, to perform the classification task

just described, one could define the loss function as:

L = − 1

N

N
∑

i=1

3
∑

c=1

yi,c log(pi,c) (2.5)

where N is the total number of training samples, yi,c is the one-hot encoded

label for the i-th sample and class c, and pi,c is the predicted probability

for the i-th sample and class c. This particular loss function L is called

categorical cross-entropy and it is the standard for multi-class classification

problems.

At this point, it is necessary to define an optimizer, which is a specific choice

of the algorithm that updates the weights wi, given the current loss status.

The process of updating the weights of the model given the loss is called

backpropagation. There are many optimizers that perform backpropagation,

with two of the most popular being Stochastic Gradient Descent with mo-

14
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mentum (SGD) and Adaptive Moment Estimation (ADAM). Both of them

use the gradients of the loss function to find the parameters wi that minimize

it. The SGD algorithm works as follows.

1: Input: Learning rate ¸, momentum coefficient ´, number of iterations

T , training data {(xi, yi)}Ni=1

2: Initialize: Parameters w(0), velocity v(0) = 0

3: for t = 1 to T do

4: Select a random sample (xt, yt) from the dataset

5: Compute the gradient ∇wL(w, xt, yt) of the loss function with respect

to the parameters

6: Update the velocity:

v(t) = ´v(t−1) + (1− ´)∇wL(w
(t−1), xt, yt)

7: Update the parameters:

w(t) = w(t−1) − ¸v(t)

8: end for

9: Output: Optimized parameters w(T )

On the other hand, the ADAM algorithm is the following.

1: Input: Learning rate ¸, ´1, ´2, ϵ, number of iterations T , training data

{(xi, yi)}Ni=1

2: Initialize: Parameters w(0), moment estimates m(0) = 0, v(0) = 0, time

step t = 0

3: for t = 1 to T do

4: Select a random sample (xt, yt) from the dataset

5: Compute the gradient ∇wL(w, xt, yt) of the loss function with respect

to the parameters

6: Update the biased first moment estimate:

m(t) = ´1m
(t−1) + (1− ´1)∇wL(w

(t−1), xt, yt)

15
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7: Update the biased second moment estimate:

v(t) = ´2v
(t−1) + (1− ´2)(∇wL(w

(t−1), xt, yt))
2

8: Compute the bias-corrected first moment estimate:

m̂(t) =
m(t)

1− ´t
1

9: Compute the bias-corrected second moment estimate:

v̂(t) =
v(t)

1− ´t
2

10: Update the parameters:

w(t) = w(t−1) − ¸
m̂(t)

√
v̂(t) + ϵ

11: end for

12: Output: Optimized parameters w(T )

In practice, before starting the training phase, one divides the dataset into

training, validation and test set. The training set is used to update the

weights of the model, while the validation set is used to assess the perfor-

mance of the NN on unseen data. The user will change the hyperparameters

of the model (such as the learning rate in the previous algorithms) based

on the performance of the model on the validation set. Finally, the test set

is used only at the end of the training, to evaluate how the model behaves

on previously unseen data. The training phase consists in applying itera-

tively the computations described above on subsets of the training set, called

batches. An epoch consists in one complete iteration of the optimizer over

the whole training set, and the training phase consists in multiple epochs.

All recent development in deep learning has been obtained using NNs, all of

which rely on the steps just described, even though with much more sophis-

ticated architectures with respect to FFNNs.
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Let us make a numerical example related to the aforementioned classification

problem. One instance of the dataset is treated as a vector v ∈ R
3, where each

dimension (also called feature, in this context) corresponds to a measured

quantity. For example,

v =







15

10001.3

0.77







corresponds to a measurement of 15◦C, 10001.3 mmbar and a humidity of

77%.

An overly simplified architecture to solve this problem can be constituted

of a FFNN made of one hidden layer, with 3 neurons. The hidden layer is

effectively a 3× 3 matrix W of learnable weights wij,

W =







w11 w12 w13

w21 w22 w23

w31 w32 w33







that can be initialized sampling from a normal distribution N(µ = 0, Ã2 = 1),

obtaining something like

W =







0.0447 1.9112 −0.2310

0.3459 1.3180 0.3696

0.3841 0.2970 0.7473







A forward pass consists in the following operations. First of all, consider

a proper normalization of the input vectors. For example, if our data is

normally distributed, we can subtract the mean value of the dataset and

divide by its standard deviation. In this case, the above mentioned vector v

17
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can take the following coordinates,

v∗ =







0.4

0.2

0.77







Now, the learnable weights are multiplied by the vector, giving

Wv =







0.0447 1.9112 −0.2310

0.3459 1.3180 0.3696

0.3841 0.2970 0.7473













0.4

0.2

0.77






=







0.2222

0.6866

0.7885







where we assume a bias b = 0. Then, the activation function is applied; in

the case of ReLU it gives an output vector ô:

ô =







0.2222

0.6866

0.7885







Moreover, since this is a multi-class classification problem, we design the

architecture to have an output vector o ∈ R
3 such that the first entry gives

the probability of having a sunny day, the second a cloudy day and the third

a rainy one. To this end, a softmax operation needs to be applied to the

output ô,

softmax(ô) =
exp(xi)
∑

j(xj)
(2.6)

where xi is the i-th entry of ô, and softmax guarantees that
∑

i xi = 1. In

this case it gives:

o =







0.2297

0.3655

0.4047






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Figure 2.1: SciML is a fundamental tool for the development of digital twins.
Image taken from Quarteroni et al. (2025) [11].

that we interpret as a 23% probability of a sunny day, a 37% chance of

a cloudy day, and a 40% likelihood of rain. At this point, the loss function

(2.5) is computed with respect to the true label corresponding to v. Then, the

derivatives with respect to the three input features x1, x2, x3 are computed,

and the ADAM algorithm updates the matrix W with the new weights.

In the following section, we review how the deployment of more and more

powerful models is affecting the world of natural science, focusing in partic-

ular to physics and engineering applications.

2.2 SciML

Scientific Machine Learning (SciML) is an emerging field of research at the

intersection between AI and physics. The goal is to blend together existing

scientific knowledge with the powerful tools of ML, to create a whole new

family of algorithms that can be used to automate, accelerate and enhance

traditional workflows. The range of applications is wide, from simulation of

complex PDEs, to inverse problems and inference. Physics and mathematics

provide us with a long history of powerful mathematical tools and extensive

knowledge on a variety of domains of the physical world; the scope of SciML

is to find clever ways to inform ML models with this solid prior knowledge

of scientific principles.
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There are various approaches to achieve this, such as modifying the architec-

ture of a deep NN, designing its loss function, or incorporating symmetries

into data processing [12].

This work provides a general overview of two of these techniques, which are

central to the context of this thesis: Physics-Informed Neural Networks and

Neural Operators.

One crucial application that this work focuses upon is solving forward prob-

lems. Simulation in physics and engineering presents numerous long-standing

challenges. For most real-world applications, the primary difficulty lies in the

exceptionally high computational cost of simulating complex, multi-scale,

multi-physics systems. This is where the ALYA framework comes into play

(section 1.3), since these kind of problems usually require expensive com-

putations, needing lots of CPUs for many hours. This can become a huge

impediment for the deployment of digital twins, that need near real-time

feedback between the physical and the digital world to be actually employed

in practical implementations. Various general and domain-specific techniques

exist to reduce computational costs, including adaptive mesh refinement, sub-

grid parametrizations, and reduced-order modeling. However, these methods

typically involve a trade-off between the accuracy of the physical system rep-

resentation and the computational efficiency of the simulation [12].

SciML is addressing these challenges by enabling learning from past simula-

tions, offering more effective computational shortcuts while minimizing the

impact on simulation fidelity.

For example, SciML is being used to learn more efficient subgrid parametriza-

tions [13], finer-resolution outputs from coarser-resolution simulations [14],

and mesh-free methods which do not require elaborate discretization schemes

[15].
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2.3 Physics Informed Neural Networks

Physics Informed Neural Networks (PINNs) are deep NNs that incorporate

physical laws directly in the loss function, translating differential equations

and conservation laws into an equivalent optimization problem. Applications

are found both in forward and inverse problems, but in this section we will

focus on the former since it is of major interest for the scope of this thesis.

PINNs can be seen as a meshless method to solve PDEs by training a NN

(forward problem), with the possibility to incorporate noisy data.

Let us start with a simple example [16]. Consider the viscous Burger’s equa-

tion

∂u

∂t
+ u

∂u

∂x
= ¿

∂2u

∂x2
(2.7)

with a suitable initial condition and Dirichlet boundary conditions. u(t, x)

is the solution of this PDE. To solve this equation a PINN can be built as

follows. In its original formulation [15], define a MLP that takes a two-

dimensional input v = (t, x) and has one neuron as last layer, representing

the output of the parametrized solution uθ. Then, sample Nphysics collocation

points from the domain and its boundary {(ti, xi)}Nphysics

i=1 and use them to

build a training set adding the available measured data. At this point, the

NN can learn a parametrization uθ of u by solving the associated optimization

problem, minimizing the following loss function:

L = wdataLdata + wphysicsLphysics (2.8)

where

Ldata =
1

Ndata

Ndata
∑

j=1

(uθ(tj, xj)− u(tj, xj))
2

21



Chapter 2. Scientific Machine . . . 2.3. Physics Informed Neural . . .

Lphysics =
1

Nphysics

Nphysics
∑

i=1

(

∂uθ

∂t
+ uθ

∂uθ

∂x
− ¿

∂2uθ

∂x2

)2

∣

∣

(ti,xi)

where uθ(ti, xi) is the output of the NN corresponding to the input (ti, xi)

and the derivatives are computed using automatic differentiation. wdata and

wphysics are weights that tune the relative importance of real data with respect

to physical principles.

The goal of the training is to learn a parametrization of u such that it mini-

mizes the MSE on both the data measurements and the PDE residuals.

Learning is considered supervised when real, potentially noisy data are pro-

vided; otherwise, it is classified as unsupervised. Note that, in the latter

case, the training set consists in randomly sampled points from a numeri-

cal distribution defined on a specified domain; the training set is potentially

infinite (up to numerical precision) and can be generated on the fly during

training (up to memory constraints).

PINNs have been used for a variety of problems, from electrodynamics [17],

to fluid mechanics [18] and there exist plenty of variants. For an extensive

review refer to Quarteroni et al. (2025) [11].

As a quick mention, a first attempt has been made to integrate a PINN into

MAGNET, which however lead to poor predictions of the magnetic field.

Many different modifications on the standard PINN have been tested, how-

ever none of them converged to the true solution of the Maxwell’s equations

when evolved over time. We believe this is because Maxwell’s equations in

the H-formulation (1.9) are very stiff and could require a more careful treat-

ment concerning the time domain. These results are non-conclusive and so

we are not reporting any of them in this work; future works could attempt

to use other formulations of the Maxwell’s equations or use recurrent units

to model the time evolution of the magnetic field.
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2.4 Neural Operators

Neural Operators are a family of models that has gained popularity in the

last years in the field of SciML to solve differential equations with NNs.

The idea behind Neural Operators finds its base on a well-know theorem

for NNs, the “universal function approximator” theorem [19]. It states that,

if given enough parameters, NNs converge to whatever function mapping

between Euclidean spaces. However, this framework is limiting when dealing

with ODEs or PDEs, when maps between function spaces may be involved,

for example between initial conditions to the corresponding solutions of a

differential equation.

In general, a PDE can be written as

(Lau)(x) = f(x), x ∈ D, (2.9)

with some boundary conditions defined on the border ∂D, where u : D −→ R
n

is the solution of the PDE, living in the Banach space U, and La : A −→
L(U;U∗) is a mapping from the parameter Banach space A to the space of

linear operators mapping U to its dual U∗ for some a ∈ A, f ∈ U∗ and

D ¢ R
d a bounded domain. From this setting, we can define an operator

G := L−1
a f : A −→ U, that by definition maps the parameter a to the solution

u, a 7→ u, fixing the boundary conditions.

For example, in the case of equation (1.9),

µ0∂tH+∇× Ä∇×H = 0 (2.10)

we have:

• The solution u is the magnetic field H : R3 → R
3.

• The free parameter a is the resistivity Ä.

• The linear operator La is Lρ = (µ0∂t +∇× Ä∇×)
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• f(x) is zero.

• A specific case is the one of an infinitely long current-carrying wire,

which is the one we focus our study on. In this case, the domain D is a

circle of radius R equal to the radius of the wire, defined on R
2, while

∂D is the boundary of the wire. The boundary conditions are given

by the value of the field on the border of the wire for every t, and the

value of H(t = 0) for every (x, y) inside the wire.

A simple approach could be to discretize the space of parameters A and have

a NN train on a subset {ua}a∈A from that discretized space. In the case of

equation (1.9), we would have a NN trained on simulations performed with

various values of Ä. This NN would learn specific mappings between different

values of Ä and the corresponding solution, however it would perform poorly

on samples outside the training set.

In this regard, Neural Operators give a more solid way to tackle the prob-

lem. Instead of learning mappings between vector spaces, they approximate

operators acting on Banach spaces, mapping from functions to functions.

Learning directly the operator gives a more solid way to generalize outside

the training set, as shown in the original paper [20].

Moreover, it can be shown that these models are discretization invariant,

contrary to vanilla NNs. A model is defined as discretization invariant if,

with a fixed number of parameters, it suffices these three properties:

1. it acts on any discretization of the input function, i.e. accepts any set

of points in the input domain,

2. it can be evaluated at any point of the output domain,

3. it converges to a continuum operator as the discretization is refined.

PINNs, presented in section 2.3, take spatial coordinates as input and are

inherently discretization-invariant, as they can be applied independently at

each location. However, PINNs are designed to approximate the solution

of a single instance of a PDE rather than learning a mapping from input
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functions to output solution functions.

Convolutional Neural Networks (CNNs), on the other hand, do not naturally

converge under grid refinement, as their receptive fields vary with different

input discretizations. Nonetheless, when normalized by grid size, CNNs can

be applied to uniform grids of varying resolutions. In this case, their be-

haviour approximates differential operators in a manner similar to the finite

difference method.

Furthermore, as we show in the next section, Transformers [21] can be inter-

preted as a special class of neural operators with structured kernels, making

them applicable to input functions defined on arbitrary grids. However, many

vision-based Transformer architectures, such as the Vision Transformer (ViT)

[22], rely on convolutional tokenization of image patches. As a result, they

do not inherently exhibit discretization invariance.

A Neural Operator can be built as a composition of linear operators, followed

by a non-linear activation function, just like a FFNN is made by a composi-

tion of linear matrix multiplications, also followed by a non-linear activation

function.

Mathematically, a Neural Operator as defined by Kovachki et al. (2021) [20]

is laid out as follows. Let us call the input functions a ∈ A, defined on the

bounded domain D ¢ R
d, and the output functions u ∈ U, also defined on

the bounded domain D′ ¢ R
d′. A Neural Operator Gθ : A −→ U has the

following overall structure (see Zongyi et al. (2020) [23]):

1. Lifting: Using a pointwise function Rda → Rdv0 , map the input

{a : D → Rda} 7→ {v0 : D → Rdv0}

to its first hidden representation. The authors of the original paper choose

dv0 > da and hence this is a lifting operation performed by a fully local

operator.

2. Iterative Kernel Integration: For t = 0, . . . , T − 1, map each hidden
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representation to the next

{vt : Dt → Rdvt} 7→ {vt+1 : Dt+1 → Rdvt+1}

via the action of the sum of a local linear operator, a non-local integral kernel

operator, and a bias function, composing the sum with a fixed, pointwise non-

linearity. Here we set D0 = D and DT = D′ and impose that Dt ¢ Rdt is a

bounded domain.

3. Projection: Using a pointwise function RdvT → Rdu , map the last hidden

representation

{vT : D′ → RdvT } 7→ {u : D′ → Rdu}

to the output function. Analogously to the first step, the authors usually

pick dvT > du and hence this is a projection step performed by a fully local

operator.

The outlined structure mimics that of a finite-dimensional neural network

where hidden representations are successively mapped to produce the final

output. In particular, we have

Gθ := Q ◦ ÃT (WT−1 +KT−1 + bT−1) ◦ · · · ◦ Ã1(W0 +K0 + b0) ◦ P.

The mappings P : Rda → Rdv0 and Q : RdvT → Rdu represent the local lifting

and projection operators, respectively. The matrices Wt ∈ Rdvt+1×dvt are

local linear operators, while the integral kernel operators Kt map functions

{vt : Dt → Rdvt} to {vt+1 : Dt+1 → Rdvt+1}. Bias functions are given by

bt : Dt+1 → Rdvt+1 , and activation functions Ãt act locally as pointwise maps

Rdvt+1 → Rdvt+1 .

The dimensions dv0 , . . . , dvT , input dimensions d1, . . . , dT−1, and intermediate

domains D1, . . . , DT−1 serve as hyperparameters of the architecture. Local

maps act pointwise: for any x ∈ D, the lifting and projection operations

satisfy

(P (a))(x) = P (a(x)), (Q(vT ))(x) = Q(vT (x)).
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Similarly, the activation function operates as

(Ã(vt+1))(x) = Ã(vt+1(x)) for any x ∈ Dt+1.

See figure 2.2 for a visual scheme of this.

Figure 2.2: Scheme of a general neural operator layer and three possible variants.
We are interested in the FNO layer, where the kernel integral is learnt in the
Fourier space [20].

Using the notation just defined, and assuming that the input and output

spaces D are the same, a forward pass of one layer can be written as
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u(x) = Ã

(

Wv(x) +

∫

D

k(x, y) v(y) d¿(y) + b(x)

)

∀x ∈ D (2.11)

2.4.1 Fourier Neural Operator

At this point, we have a general framework for building Neural Operators,

and we can exploit our prior knowledge coming from physics to design a

specific kernel k(x, y) in equation (2.11). Classically, a typical way to solve

complex PDEs is to apply a Fourier transform to the original equation, solve

it in the Fourier space, and then project it back to the original space by

applying the inverse Fourier transform. Thus, we know that moving the

original image data representing an instance of the function space into a

Fourier embedding could help a Neural Operator learning the solution.

A Fourier Neural Operator (FNO) can be built simply by taking the Fourier

transform of the input of each layer, learn the parametrization of the kernel k

using a linear layer, and then projecting back using the inverse Fourier trans-

form. Computationally, this is done using the Fast Fourier Transform (FFT)

and its inverse (iFFT), truncating the lower modes of the FFT. Moreover, as

displayed in fig. 2.2, a residual connection is made between the input of each

Fourier layer and the output of the iFFT, allowing for a better propagation

of the gradient, as usual in deep networks, and also for learning non-periodic

features in the data.

We conclude this section by noting that operator learning can be seen as

an image-to-image problem, where instead of using CNNs, we use Fourier

layers, which are more suited for solving PDEs. During the development of

the present work, we quickly assessed the performance of a classical ResNet

architecture, using CNN layers, with a FNO architecture, seeing that CNNs

are much harder to train than FNOs in this context.
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Figure 2.3: (a) The full architecture of neural operator: start from input a. 1.
Lift to a higher dimension channel space by a neural network P . 2. Apply T
layers of integral operators and activation functions. 3. Project back to the target
dimension by a neural network Q. Output u. (b) Fourier layers: Start from input
v. On top: apply the Fourier transform F; a linear transform R on the lower
Fourier modes and filters out the higher modes; then apply the inverse Fourier
transform F−1. On the bottom: apply a local linear transform W . Taken from
Zongyi et al. (2020) [23].

2.5 Vision Transformer and Adaptive Fourier

Neural Operator

The final architecture we examine is the Adaptive Fourier Neural Operator

(AFNO), designed as an optimized Vision Transformer (ViT) that integrates

the principles of FNOs. In this section, we summarise the key points regard-

ing the ViT architecture and how the AFNO makes it more efficient.

In recent years, natural language processing has seen significant progress, par-

ticularly with the development of Generative Pre-Trained models [24]. These

models have achieved notable results, largely due to the Transformer archi-

tecture. This architecture supports strong scalability, enabling the training

of very large models with billions of parameters. The work of Dosovitskiy et

al. (2021) [22] showed that a simple Transformer-like implementation to im-

ages can achieve results that outperform classical ResNet architectures based

on CNNs.
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Figure 2.4: ViT overview. An image is split into fixed-size patches, each of which
is linearly embedded, position embeddings are added, and the resulting sequence
of vectors is fed into a standard Transformer encoder. To perform classification,
the standard approach of adding an extra learnable “classification token” to the
sequence is employed. This illustration is taken from Dosovitskiy et al. (2021)
[22].

We start with a general overview of ViT, followed by a more detailed account

of the AFNO in the next paragraph. For more details, please refer to the

works of [22] [25].

The input of the ViT is an image of shape (C,H,W ), which gets parsed

by a CNN layer to create patches of shape (P, P ). After the patches are

created, they get flattened and linearly projected into an embedding space

of dimension de. Then, a positional encoding is concatenated to these em-

beddings, in order not to loose the spatial information of the patches in the

original input. The resulting vectors get fed to the Transformer Encoder,

which computes a Multi-Head Attention operation on all embedded tokens.

At its core, this operation linearly projects each token into three different

vectors, called keys, queries and values. Then, a similarity score is computed

between the keys and the queries, which is then used to learn a context-aware

change of coordinates applied to the values vectors. The resulting vectors

are then fed to a MLP that learns non-linear relations between them. In this

way, the Transformer Encoder creates a meaningful encoded representation

of the input data, which can be transferred to downstream tasks, for example

classification.
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More precisely, a 2D image can be represented as a token tensor X ∈ R
h×w×d,

made of hw tokens of dimension d. Bare in mind that lowercase h and w are

not the height and width of the image in pixels, but rather the number of

rows and columns of a matrix, which entries are vectors of dimension d (i.e.

X is a tensor). That is, we have N = hw tokens, each of shape d.

By doing so, an image can be treated as a sequence of tokens, from which a

Transformer can learn a contextual embedding. ViT does so by computing

a similarity score among all pairs of tokens, via self-attention mixing. The

self-attention mixing operation is defined as Att : RN×d → R
N×d

Att(X) := softmax

(

XWq(XWk)
T

√
d

)

XWv (2.12)

where Wq,Wk,Wq ∈ R
d×d are the query, key and value matrices, respectively.

X is the input tensor. Softmax is defined as:

softmax(x) =
exp(xi)
∑

j(xj)
(2.13)

It can easily be shown that the self-attention (2.12) can be viewed as a dis-

crete kernel summation. This allows us to link the theory of neural operators

presented in section 2.4 to Transformers. First, we callK the softmax output,

which is the N × N matrix of dot products between the linearly projected

keys and the linearly projected queries. Calling k[s, t] := K[s, t] ·Wv, we have

the kernel representation of self-attention:

Att(X)[s] :=
N
∑

t=1

X[t]k[s, t] ∀s ∈ [N ] (2.14)

where s, t ∈ [hw] parametrize the token sequence and the matrix-valued

kernel k. Going further, the kernel summation (2.14) can be extended to

a continuous kernel formulation, where X is no longer a finite-dimensional

vector in the Euclidean space X ∈ R
h×w×d, but rather a spatial function
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in the function space, X ∈ (D,Rd), defined on the domain D ¢ R
2 which

is the physical (geometrical) space of images. At this point, the theory of

operator learning described previously applies, bridging a clear connection

between neural operators and attention. In fact, we can take the integral

from equation (2.11) and change names to the variables to get

K(X)(s) =

∫

D

k(s, t)X(t)dt ∀s ∈ D (2.15)

Again, an appropriate choice for k(s, t) gives us the integral in the FNO layer:

K(x)(s) = F−1(F(k) · F(X))(s) ∀s ∈ D (2.16)

where · denotes a matrix multiplication, F the continuous Fourier transform,

and F−1 its inverse.

Let us see now how the AFNO architecture is built starting from this the-

oretical common ground. First of all, it should be noted that the attention

operation (2.12) is quadratic in the number of tokens, since a dot product is

computed between all pairs of tokens. To make this scaling better, AFNO

performs the token mixing directly in Fourier space, as a continuous global

convolution, using a Fourier layer from FNO. Computationally, this is done

by applying the Fast Fourier Transform (FFT) to the input tokens

Z = FFT(X) (2.17)

with Z ∈ C
h×w×d×d the complex-valued tensor of the FFT-transformed input

image X. Then, the real and imaginary components of Z are separately mul-

tiplied by the kernel k which is parametrized by a matrix W ∈ C
h×w×d×d. An

activation function follows, and the operation is repeated again. However, to

avoid the aforementioned quadratic scaling of self-attention, a block-diagonal

structure is imposed to W . A MLP block follows, that learns the interac-

tions between different tokens, modifying them based on the input adap-

tively rather than using fixed transformations, as in standard FNO. Inspired
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by self-attention, this MLP replaces the static weight transformation with a

learnable mapping, allowing different frequency components to interact dy-

namically. Moreover, to promote sparsity, a soft-thresholding and shrinkage

operation is applied:

Sλ(x) = sign(x) max{|x| − ¼, 0} (2.18)

where ¼ ∈ R is a tunable parameter that controls sparsity. Then the inverse

Fourier transform is computed. Figure 2.5 shows an illustration of the AFNO

architecture.

Figure 2.5: The multi-layer Transformer network with FNO and AFNO mixers.
FNO performs full matrix multiplication that mixes all the channels. AFNO per-
forms block-wise channel mixing using MLP along with soft-thresholding. The
symbols h, w, d, and k refer to the height, width, channel size, and block count,
respectively. Image taken from Guibas et al. (2022) [25].
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Chapter 3

Methodology

In this chapter, we explain the methodology used in this project. We start by

outlining the goal of this thesis, giving a general overview of how this work

is laid out. We continue by describing the dataset generation process and its

statistical properties, followed by a detailed discussion of the approach used

to train and improve the NNs. Finally, we examine the processing pipeline

and training strategy.

3.1 Problem statement

Our objective is to develop an AI surrogate model that can autonomously

simulate the evolution of the magnetic field in a cross-section of current-

carrying wire, in the infinitely long approximation. Ideally, the model should

work for any superconducting material (material-agnostic) and across a wide

range of boundary conditions, requiring only the initial conditions as input.

In order to train such a model, we need to create a dataset made of numer-

ical simulations from which the model can learn the solutions of Maxwell’s

equations for a variety of different materials, boundary and initial condi-

tions. Then, we need to define a learning framework, choosing the specific

architectures of the NNs and determine a training strategy to accomplish the
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Figure 3.1: Scheme of the general methodology used for this work.

task. Last, the model needs to be evaluated both in terms of precision and

performance, highlighting its strengths and weaknesses.

3.2 Dataset creation, management and anal-

ysis

In this section we describe the dataset used to train the AI models, starting

from the data creation, to the data management and processing.

3.2.1 Dataset creation

We create a dataset using the MAGNET finite element code, described in

chapter 1. We run simulations on a simple physical scenario, that is of a

circular section of an infinitely long current-carrying superconducting wire.

The wire has radius 0.001m and the boundary conditions are given by a

sinusoidal current flowing on the border of the wire, having equation:
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i(t) = i0 sin(2Ãf · t+ ϕ) (3.1)

where i(t) is the instantaneous value of the current, i0 is the current ampli-

tude, f is the frequency, t is the time and ϕ is the phase. The value of f

is fixed at 50Hz, ϕ = 0 rad, and t ranges from 0s to 0.05s with an adaptive

timestep. The maximum number of timesteps is fixed at 10, 000. Maxwell’s

equations (1.9) are solved on an unstructured mesh made of 4525 node ele-

ments. The outputs of one simulation consists in binary files, containing the

solution of Maxwell’s equations at each node of the mesh, which are then

converted to text files. In order to avoid too large outputs, we save every

10th timestep. Each simulation comes also with a text file containing the

(x, y, z) coordinates for each node. In this case z is always zero, since this is

a two-dimensional problem, defined on the (x, y) plane. Beyond computing

the solution of the magnetic field H, MAGNET also computes other rele-

vant physical quantities at every timestep; the total output is formed by 8

quantities:

MAGNET output Description
Hx The x component of the magnetic field
Hy The y component of the magnetic field
Hz The z component of the magnetic field
Fx The x component of the Lorentz force
Fy The y component of the Lorentz force
Fz The z component of the Lorentz force
jz The z component of the induced current
Q The dissipated power per unit volume

Table 3.1: List of physical quantities produced by MAGNET

The magnetic field is given in Tesla, the Lorentz force in Newton, the induced

current in Ampere, and the dissipated energy in Watts per cube meters,

which is computed as the integral of the induced current by the electric field,

over the domain. In image 3.2 some snapshots of these quantities are shown.

Regarding storage, MAGNET uses double floating points numerical repre-
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Figure 3.2: An example of the output quantities from a simulation performed with
MAGNET. Units are normalized by the value on the border.
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sentation, so each timestep requires a total of:

number of nodes× number of physical quantities× 8B

which translates into 4525× 8× 8B ≈ 290KB per timestep. This means that

if one simulation is made of 1000 timesteps, it will occupy almost 290 MB in

storage, which in turns translates to almost 3TB of data on disk for 10, 000

simulations. We should keep this figure in mind, knowing that the storage

available is limited in MareNostrum 5.

Creating a dataset from scratch requires careful design, since the choices done

in this phase will inevitably have consequences on the outcome of the final

model. Also, launching multiple simulations requires a lot of time, so it is

fundamental to envisage possible problems beforehand. Moreover, to build

a robust model that performs well in real-world scenarios, it is crucial to

create a dataset that adequately represents the distribution it will encounter

in production. However, the higher the variance of the dataset, the harder it

is to be learned by a NN. It is also important to understand that creating a

high-variance dataset means to save multiple simulations, which come with

a big storage consumption, and that is the main constraint in MareNostrum

5. We have to strike a balance between these considerations and decide

to simulate 9100 different simulations, each running with different physical

parameters. The dataset occupies almost 3 TB in storage and is made of

27, 662, 245 total files. The physical parameters that we choose to change

are:

• The value of the exponent n in equation (1.7). 10 linearly spaced

values are taken ranging from 5 to 30, comprehending almost all HTS

materials [1].

• The value of the critical magnetic field Ec in equation (1.7). 10 loga-

rithmically spaced values are taken, ranging from 10−5 to 10−1.

• The value of the current amplitude i0 in equation (3.1), ranging from

100 A to 1090 A, with a step size of 10 A.
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The range of these values have been chosen by looking at the standard values

used in literature (cfr. [26] [27] [28] [29]).

This results in a total of 10, 000 different configurations. However, due to

time constraints, we discontinued simulations that required more than 24

hours to converge, discarding 900 simulations in the process.

Each simulation runs with 12 cores and each run takes a variable time span

to complete. The whole process of the data creation, starting from running

the simulations, to converting the binary files into text files, followed by

the compression in tar archives takes approximately 10 days. This figure is

mainly driven by the time spent for a job to get out of the Slurm queue

before being executed.

3.2.2 Data management

After creating the dataset, it is important to understand the best way to

manage it, in order to optimize the processing pipeline during training and

inference. Even though we are not dealing with a huge dataset, it is still

big enough to cause some challenges. In this section, a first approach to

data handling is described which resulted in issues that hindered concurrent

training of the AI models. Afterwards, we describe how we tackled and solved

these problems.

Let’s start by considering the easiest, yet faulty, way of dealing with big

data on a distributed computing environment. As soon as the MAGNET

simulations are run and the text files are created, the dataset consists of a

folder called dataset, containing 9100 folders inside, each of these comprising

a variable number of files. As will be explained more in detail in section 3.4,

data needs to be loaded from disk, pre-processed on CPU and then sent to

GPU for training. In this approach, the process of loading and processing of

data is managed by a Dataset class that we define in Python. During training,

this class randomly reads a csv file containing the path to the necessary

files; these are then opened in read-only mode from disk to CPU, processed

one by one and then sent to GPU in batches. Also, the Dataset class is
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wrapped by Pytorch Dataloader, which spawns a tunable number of workers

to perform these computations. One training is run on one node, with 160

logical cores and 4 Nvidia H100 GPUs. The number of workers is set to 39,

in order to have 1 logical core available for each GPU and to exploit the

others to load data in parallel (160 total cores - 4 GPU = 156 free cores

for computation; to distribute evenly the cores on the 4 GPU, 156/4 =

39 workers for each GPU). The strategy used for parallelizing the training

is Distributed Data Parallel (DDP). DDP works by launching a separate

process for each GPU, where each process independently holds a copy of the

model and processes a different mini-batch of data. Each process has its own

DataLoader, meaning data loading is done in parallel for each GPU. After

computing local gradients, DDP synchronizes the gradients across GPUs and

then updates the model weights.

Problems rise when launching more than 20 independent jobs concurrently,

the General Parallel File System (GPFS) of MareNostrum 5 suffers from seri-

ous delays, affecting all users of the supercomputer. So, we had to investigate

the reasons behind this to find a way to exploit the resource available at best.

First of all, we realize that this problem is linked to I/O operations from disk

to CPU. It is not related to communication between the CPU and GPU,

nor to communication between nodes, as it specifically affects operations

involving GPFS on the login node, and each node runs an independent job.

This happens because GPFS is a (distributed) networked file system, which

can suffer from delays if the storage nodes become overloaded by a high

volume of small, concurrent requests in the same directory. The ideal case

would be to load all the data at once on memory, which is of course not

possible (each node has a memory of 512 GB and our dataset is 3 TB in

storage). To get over this situation, it is necessary to read large chunks of

data instead. To this aim, the dataset is compressed into tar archives, each

comprising 100 folders. Then, the sharded data is loaded sequentially from

these archives using the webdataset library in Python. Sequential reading

is faster than random indexing, and also loading shards instead of single

little files exploits the bandwidth capabilities of MareNostrum 5, which are
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800GB/s in the accelerated partition [7]. Moreover, a deeper look at the

process spawned by Pytorch Dataloader showed that the optimal number of

workers is 6, see figures 3.3 and 3.4. This changes allow concurrent trainings

on multiple nodes, without overloading the GPFS. In section 3.4 we explain

in more detail how data is processed before sending it to GPU.

3.2.3 Dataset statistics - exploratory analysis

Before applying whatever ML algorithm to a dataset, it is mandatory to per-

form an exploratory analysis first, in order to gather statistical information

that will be used for pre-processing. In this section we report the insights

found and how these relate to the type of normalization applied to data,

before training the AI algorithm.

Our data is made of 3TB of txt files, which makes it impossible for us to load

it all in memory and perform directly an analysis on it.

We begin our analysis qualitatively by examining the distribution of values

at a single timestep, than a more quantitative analysis is performed. Im-

mediately, we observe very skewed distributions in most timesteps, for every

physical quantity, and in every simulation. The high variance observed is

an inherent part of the simulation and therefore, rather than removing the

extreme values, they must be handled carefully. However, as we will describe

in chapter 4, if we subsample the dataset and take only one timestep every

50 for every simulation, the distribution of these values becomes Gaussian.

With these considerations in mind, it is clear that a transformation of this

kind should consist in one single function that is invertible and uniquely

applied to all the instances of the dataset. For example, it would be wrong

to compute a normalization for each timestep or for each batch of timesteps,

since it would remove the information about the time evolution of these

values; it would also be wrong to apply a different transformation to each

simulation for two reasons. The first one is that each simulation runs with

different absolute values of the currents, that would be flattened from a

normalization of this kind. The second reason is that computing a quantity
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Figure 3.3: Qualitative assessment of I/O load on the GPFS when performing
random access operations on the dataset. All values are obtained heuristically
using the Linux top command. They are not statistically rigorous but serve as an
indicative measure of the I/O load on the file system. The first column refers to
the number of threads used by each PyTorch dataloader. The second column gives
a figure of the number of batches processed by the neural networks each second.
The third column refers to processes actively working (R state) and idle processes
waiting for I/O operations (D state). Many processes in R state correspond to
a higher load on the file system. The last column shows, indicatively, the five-
minute average load on the CPU. Randomly accessing the dataset leads to very
high CPU load and numerous D-state processes that negatively impact the GPFS.
Additionally, changing the number of workers in the dataloader does not affect the
number of iterations per second.
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Figure 3.4: Qualitative assessment of I/O load on the GPFS when accessing the
dataset in shards, using webdataset. All values are obtained heuristically using the
Linux top command. They are not statistically rigorous but serve as an indicative
measure of the I/O load on the file system. The first column refers to the number
of threads used by each PyTorch dataloader. The second column gives a figure of
the number of batches processed by the neural networks each second. The third
column refers to processes actively working (R state) and idle processes waiting for
I/O operations (D state). Many processes in R state correspond to a higher load
on the file system. The last column shows, indicatively, the five-minute average
load on the CPU. This approach leads to a higher number of iterations per second
and a lower load both on the file system and on the CPU. The optimal number of
workers is around six.
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Figure 3.5: Random dataset access versus sequential access. Making many small
requests from the dataloader to the storage causes the GPFS to overload. Image
inspired by “Introduction to Large Scale Deep Learning” - Thomas M. Breuel [30].

simulation-wise, that is over all the timesteps of a given simulation, requires

to know in advance how the simulation will evolve already at time zero, which

is not possible during inference, where the model will be given only the first

timestep.

To this end, we decide to use Robust Scaler, which consists in the following

transformation [31]:

RobustScaler(xi) =
xi − µ1/2

IQR
(3.2)

where xi is a node value, µ1/2 is the median of the distribution of values

of {xi}, and IQR is the interquartile range which is the difference between

the third quartile and the first quartile computed on the distribution of the

values of {xi}.

The values found are:
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Quantity Value
Median Values

Hx, Hy, Hz, jz, Fx, Fy, Fz 0
Q 7422.14
Interquartile Range (IQR) Values
Hx 6.3468× 103

Hy 6.3468× 103

Hz 0
jz 1.5579× 108

Fx 6.6735× 105

Fy 6.6735× 105

Fz 0
Q 2.2810× 105

Table 3.2: Median and IQR of the training set. The units are reported in the
previous section.

3.3 General methodology for model selection

In this section, we discuss the modus operandi followed during the devel-

opment of this project. Besides general deep learning good practices, we

followed the tips contained in Google’s Deep-Learning Tuning playbook [32].

The idea is to start by getting a solid baseline, and then fine-tune it by

introducing incremental changes to either the model architecture or data

processing. A modification is accepted only if it leads to better performance

in the adopted metrics. As said, the process is incremental, in the sense that

when a change is found to be beneficial, it is kept fixed and never tuned again,

even when further changes are made on other hyperparameters. For example,

if we find that a certain number of layers is optimal, we treat that number as

a fixed parameter when assessing the performance of weight decay. This is

done to avoid trying all possible combinations of the hyperparameters, which

can be very expensive. An exception is made for the learning rate, which

is tuned each time a new change is made to the network. Hyperparameters

tuning has been performed using a grid search, launching multiple jobs with

Slurm.

To create our AI surrogate model, we tested two different NNs. The first
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is a FNO, which has shown good results in learning continuous mappings

in infinite-dimensional spaces of functions, and we hope that it can perform

better than standard CNN-based models. The second model is an AFNO,

which uses an attention mechanism to learn long-range dependencies between

patches. This architecture showed great potential in solving complex PDEs

autoregressively [8], and we hope to replicate the results found in literature

by adapting it to our use case. For the theoretical details behind these, please

refer to Chapter 2.

In the Learning framework section 3.5.2 we explain the final architectures in

detail, while in the section 3.5.1 we describe thoroughly how these models

are trained to obtain a generative model for the simulation of HTS wires.

Since we deal with a generative task, a natural choice for the loss function

is the mean-squared error (MSE), which is computed pixel-wise between the

output of the network and the true solution of the PDE,

L =
1

N

N
∑

i=0

(xi − x̂i)
2 (3.3)

where N is the total number of pixels in an image, xi is the true value of

the pixel i, while x̂i is the corresponding value from the generated image.

In other words, we compute the error as the squared difference between the

true and the generated value of the PDE solution for every node in the mesh

and for a given timestep, then we take the average over all the nodes and use

that value to compute the gradients for backpropagation.

The best model is chosen considering the total loss (3.3) as the main metric,

followed by the convergence speed.

We do not treat the batch size as a tunable parameter [33], but rather we

choose the maximum value that decreases the computing time and makes

the training more stable, given the GPU resources constraints. We choose

Adam as optimizer, fine tuning its hyperparameters based on its behaviour on

training and validation loss curves. Moreover, we tried different processing of
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data. Advancing with the training pipeline, we tested our nets with different

number of layers, channels of the convolutional layers in the FNO, embedding

dimension of the AFNO, and resolution of the input. We stress the fact that

these changes have been studied incrementally.

3.4 Processing pipeline

In this section we report the steps followed to process a data instance before

feeding it to the NN. First of all, data is stored in tar archives in a .txt file

format, as explained in section 3.2.2. At this point, we would like to shuffle

the data before splitting it into train, validation and test set. However,

webdataset requires data that belong to the same training sample to stay in

the same shard, since data is read sequentially. That means that shuffling all

data is not possible, and instead we shuffle the indexes related to the 911 tar

archives. Within each tar archive, data is not shuffled. Shuffling is done by

fixing a random seed for reproducibility. As said, data is read sequentially

in shards by the webdataset class, which also performs the following pre-

processing steps on each txt file:

1. Converts the txt file to a Numpy array. The array has shape (1,4525) if

it represents a scalar field, i.e. induced current and dissipated energy,

while it has shape (3,4525) if it is a vector field, i.e. magnetic field and

Lorentz force.

2. A Euclidean mesh of shape (R,R) is created and the field is interpolated

on it using a nearest-neighbor function. The resulting array is of shape

(1, R,R) if it’s a scalar field, or (3, R,R) if it’s a vector field. We do

not use other kinds of interpolations, to avoid artifacts in the model

that are not present in the original MAGNET simulation.

3. Data is then sent to the GPU in batches. The batch contains (batch

size, 5) elements; in order these are: the key of the timesteps and

physical quantities loaded, current array, magnetic field array, Lorentz

force array, dissipated energy array.
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4. Data is normalized with Robust Scaler, using the values reported at

the end of section 3.2.3.

5. Each array contains both input and targets of the network, so we create

the input and target arrays from the batch array. Before doing this,

we have to be sure that the inputs match correctly the targets. Given

the way the dataset is stored and read, this is done by checking that

two contiguous arrays belong to the same simulation, using the key

mentioned in point 3 to find the index where this change occurs. The

batch is discarded if it contains only one instance.

6. Finally, the input array is passed to the network, that performs the

forward pass, computes the loss and backpropagates the gradients. Loss

is MSE (eq. 3.3).

At this point, some reasoning is needed regarding the interpolation phase. As

reported in section 3.2, MAGNET simulations are performed on an unstruc-

tured grid, while all the nets that we tested require image-like inputs. These

are obtained by interpolating the unstructured arrays into a Euclidean grid of

shape (R,R), where R defines the resolution of the input data (point 2 of the

list above). We immediately recognise a clear tradeoff between resource con-

sumption on one hand, and data quality one the other. In fact, low-resolution

input data would require a low memory footprint for two reasons. The first is

evidently linked to data itself, since the less bytes are used to represent it, the

less memory it uses on the GPU. The second is instead linked to the model

complexity. In fact, it would require less parameters to capture the relevant

features of low-resolution data, with respect to high-resolution, which fine-

details can be captured by increasing the number of neurons. In other words,

high-quality input data calls for more complex models, with more parame-

ters and, thus, a bigger memory footprint. Adding more degrees of freedom

allows to extrapolate more information from data while, on the contrary, the

same number of parameters could be excessive with low-quality data. The

tradeoff consists in finding a low enough value of R, such that we can still

retrieve the relevant information from data without running out of memory,
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given the computational resources at our disposal. To make this reasoning

more quantitative, consider for example the memory usage of a low-resolution

input instance, with R = 64. As already explained in section 3.2, each input

data is made of 8 channels stacked together, which means that the actual

input fed to the net is an array of shape (batch size, 8, R,R), for example

(1, 8, 64, 64). Given these numbers, a single data instance represented by

single precision floating points (float32), would occupy (32bits=4B):

(1× 8× 64× 64)× 32bits ≈ 131KB

that is, 8× 64× 64 = 32, 768 data points to be evaluated. For an input like

this, a reasonable value for the total number of parameters of a NN is of

order of some millions, which would corresponds to an order of some MB on

the GPU.

On the other hand, a high resolution input with R = 1024, using the same

float32 precision, would consist in an array of

(1× 8× 1024× 1024)× 32bits ≈ 34MB

with a quadratic dependency of the memory footprint on the resolution. An

input like this consists in ≈ 8× 106 data points, which would require billions

of parameters to fit properly, occupying some GB in the GPU.

Having said this, we must recall that the original unstructured mesh on which

the numerical simulation is performed consists in 4025 nodes, implying that

using R = 64 would create more interpolated points than the ones where the

PDE was numerically evaluated (64 × 64 = 4096, which is already greater

than the number of nodes used by MAGNET, 4025). However, we think that

a slightly bigger number of interpolated point can benefit the learning process

of the network, even though the interpolation will inevitably create artifacts

not present in the original data. This is a limitation of our approach, that

will be discussed in the last chapter.
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3.5 Training pipeline

In this section we describe in detail the steps followed to obtain an AI surro-

gate model. The final goal is to obtain a deep learning model that produces

the same outputs of the MAGNET code on a section of an infinitely long

current-carrying HTS wire. The outputs produced are listed in section 3.2.1.

Once the initial conditions are given to it, the model should be able to gen-

erate the next output autoregressively, ideally as long as we want. In section

3.5.1 the steps followed to obtain such a model are described, while in section

3.5.2 the architectures of the best model found after hyperparameters tuning

are shown. This approach draws heavily from the work of Pathak et al. [8],

which applied the same techniques in meteorology.

3.5.1 Training strategy

First of all, the dataset is split into train, validation and test set. This is

done by first shuffling the indexes of the tar archives where the dataset is

stored, and then considering the first 70% of the indexes to be in the training

set, the second 15% to be in the validation set, and the third 15% to be in

the test set. We split on the tar archives because of the nature of how data

is loaded by the webdataset class. As said in section 3.2.2, data is read in

shards and each of these contain the timesteps data in order. Mixing inside

the tar archive would impede this kind of loading. As common practice in

machine learning, the training set is used to update the weights of the model,

the validation set is used to assess the impact of different hyperparameters.

The test set is never seen until the very end of the project, to assess the

performance of the model on previously unseen data.

Following the prescription of Pathak et al. (2022) [8], we divide our training

phase in three steps:

1. Pre-training phase

2. Fine-tuning phase

3. Autoregressive evaluation
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The pre-training phase consists in making the net learn to predict one timestep

ahead. In this phase, the input of the net is one timestep xt and the loss

is computed as the MSE between the output of the net x̂t+1 and the true

timestep xt+1. However, differently from Pathak et al. (2022) [8], we use

this phase mainly to assess how the number of parameters of each model

impacts the performance on the loss. In order to obtain results quickly, we

stop the training as soon as the validation curves show a clear trend, giving

the best model. Most times one epoch is enough to assess this. The resulting

models are fine-tuned in the second phase. Now the model has to learn how

to predict two timesteps ahead of the input. This is done by performing the

same computation as during the pre-training, taking one timestep xt and

generating x̂t+1, computing a loss L1 . However, in this phase the generated

x̂t+1 is fed again to the net, which predicts x̂t+2. Another loss L2 is computed

between the second prediction and the true value xt+2. The total loss is the

sum of the two, L = L1 + L2, which is used for backpropagation. In this

way, the model is forced to learn how to deal with its own predictions, which

should aid the autoregressive predictions. All {xi} are taken from the train-

ing set. Before the pre-training phase all the networks are initialized using

He normalization, while for the fine-tuning phase the nets are initialized with

the best weights found in the pre-training phase.

The last step is to use the trained models to generate sequences of mean-

ingful timesteps, and estimate the overall performance. During this phase,

gradients are detached from the computational graph and the weights of the

model are not updated. We start by choosing one timestep from the valida-

tion set, feeding it to the network and predict the next timestep. Then, the

output is fed again into the net to predict the following step.

3.5.2 Learning framework

All the runs are performed using Lightning Pytorch [34] on the supercom-

puter MareNostrum 5. Each run uses 4 GPU NVIDIA H100, and one training

epoch lasts approximately 2 hours.
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Figure 3.6: Illustration of the pre-training phase. The input of the NN is a numeri-
cal solution from MAGNET, for some time step t and a configuration of (Ec, n, i0).
The net predicts the following timestep, which is compared to the target numerical
solution via MSE. Then the weights of the model are updated with backpropaga-
tion.

We train two different architectures, a Fourier Neural Operator (FNO) and

an Adaptive Fourier Neural Operator (AFNO). We choose these because they

both showed good results in solving PDEs [23, 25] and we hope to replicate

them for our use-case. We also try a ResNet architecture, because its a

natural benchmark that can be interesting to compare against the other two.

However, we immediately see that ResNet is harder to train with respect

to FNO and AFNO, which show promising results without much finetuning.

So, we decide to discard ResNet from future experiments, given our time and

resources budget.

As already explained in section 3.5.1, we start with a grid search during the

pre-training phase. The grid search is performed by running N independent

concurrent jobs on N nodes in the MareNostrum 5 cluster. All training use

Adam as optimizer. The first parameter that we assess is the number of

layers. Once found the optimal number of layers, we perform a second grid

search, aiming to see if the nets could benefit from adding more parameters.

52



Chapter 3. Methodology 3.5. Training pipeline

Figure 3.7: Illustration of the fine tuning phase. The NN is loaded with the weights
found in the pre-training phase. Similarly to the pre-training phase, a true sample
Xtrue(t) is given as an input of the NN, which predicts the following timestep
Xpred(t+1). This is then fed again to the model, which predicts Xpred(t+2). The
final loss used for backpropagation is the sum of the two losses L1,L2 computed
in the intermediate steps.

To do so, we vary the dimensionality of the embedding space of the AFNO

and the number of latent channels in the spectral layers of FNO. Finally, we

run a full training with the best parameters found. In this phase we also test

some variations to the optimizer, changing ´1, applying weight decay, and

assessing Cosine Annealing scheduler for the learning rate.
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Figure 3.8: Illustration of the autoregressive inference. During this phase gradi-
ents are detached from the computational graph. The model is initialized with
Xtrue(t = 0), then the model predicts the following timestep, which is used as
input for the successive prediction. In this way, the model is able to evolve the
system in a completely unsupervised way.
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Results

In this chapter we outline the results obtained during the development of

our AI-surrogate model aimed at accelerating HTS simulations. The models

presented vary on their complexity and on the difficulty of the task that they

are trained on, starting from a simple, light model that serve as starting point

and proof of concept, going to highly parameterized networks trained on the

whole dataset and many physical quantities. We end up with a model that

can evolve the magnetic fields in a HTS wire autoregressively for around 4 to

5 steps in a coarse grid, corresponding to 200− 250 steps in the MAGNET,

but only for a subset of the test data.

Proof of concept

First of all, we want to assess if our approach is feasible. To do so, we select

a subset of the dataset and train an AFNO on that. The idea is that if the

AFNO shows promising results on a low-variance dataset, it means that a

more thorough study can be performed.

The subset is selected such that only the current i0 changes, while the

material-related parameters stay fixed. No hyper parameters fine tuning

is performed, since we are interested in assessing the base performance of the

model.
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Fig. 4.1 shows the performance of the proof-of-concept experiment. We

saw empirically that, for many simulations, a characteristic time scale of the

evolution is Ä = 50 MAGNET timesteps. So, we believe that training will

be much easier if the net is trained on a coarse grid, learning to predict 50

timesteps ahead, instead of just 1. We start following this intuition, even

though, in the next section we try training on all the timesteps, to see if the

time resolution can be improved. The reconstructions on the validation set

are promising, however, when evaluated autoregressively, the model predic-

tion diverge quite quickly from the ground truth, as shown in fig. 4.2. This

suggests that model fine-tuning is necessary. We are satisfied with these

preliminary results, since they show that the task is feasible and it is worth

extending to the whole dataset.

56



Chapter 4. Results

Figure 4.1: Pre-training results obtained with the AFNO model during the explo-
rative proof-of-concept phase. The model is fed with a solution Xtrue(t) and the
predicted Xpred(t+ 1) is shown in the central column. The left column shows the
true solution as computed by MAGNET, while on the right the pointwise differ-
ence is shown. All images share the same scale of colors.
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Figure 4.2: AFNO autoregressive evolution of Hx as found during the explorative
proof-of-concept phase, using a coarse grid. Each row is a different time step
of the evolution. The first column shows the target simulation as performed by
MAGNET; the central column shows the predictions made by the NN; the last one
shows the pointwise difference between the two. We see that the AI predictions
quickly diverge from the ground truth. 58
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Training on a fine-grained timescale leads to learning the identity

function

Given the promising results obtained with the toy model and data, we train

two NNs to evolve all 8 physical quantities (cfr. sec 3.2), with a time resolu-

tion of 1 timestep, on the whole dataset. We consider a FNO and an AFNO

architecture.

During the pre-training phase both FNO and AFNO seem to perform well,

however when evaluated autoregressively neither of the two are able to evolve

the system. Our intuition is that the networks learned the identity function,

and not the differential operator. In fact, we already know that the time

scale of the problem is Ä ≈ 50, making two subsequent timesteps practically

identical. A NN can reach very low MSE losses just by giving as an output

the very same input, that is, learning the identity function. To solve this

issue, we train the net on a much coarser time scale, with the aforementioned

timestep.

Coarser timescale leads to less data

To this end, we filter the dataset, keeping only every 50th timestep. Also,

since we want the network to learn the evolution of the system, we select

only the simulations that contain more than 500 timesteps, in order to have

at least 10 training instances for each configuration. The downside is that

we end up with a very limited dataset of 6554 simulations, accounting for

12, 877 total training instances, 1746 timesteps in the validation and 2336

timesteps in the test set. The training is very fast, both because the dataset

is small and because lighter models are enough, however these converge to

very high losses, which correspond to bad reconstructions.

Training on Hx only is an easier task

To counteract this issue, we decided to simplify the task and train the NNs

to evolve only Hx, assuming that an easier task could be accomplished even

with less data. Indeed, we find that our best FNO and AFNO obtain good
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reconstructions in the pre-training phase and also are able to evolve autore-

gressively some instances of the training set. However, both models struggle

to generalize due to the limited amount of data. At this point, two possible

paths can be followed: creating more data from simulations, or using data

augmentation techniques. The first would be ideal, but due to the limited

amount of time at our disposal, we decide to go for the second option.

Using all data on a coarse grid requires bigger models

Instead of using standard data augmentation techniques, like applying ran-

dom noise or masking the data, we start by exploiting the existing data that

we have. The former techniques are used to effectively create new artificial

data instances by modifying the true original ones. However, since we already

have a large amount of true high fidelity data, we decide to use that first.

Moreover, these data is perfectly suited for our goal, since close timesteps are

very similar to each other (and that is precisely the reason why we discarded

them in the first place, moving from a 1 timestep prediction to a coarser time

resolution of 50 timesteps).

During this stage we consider all the data in our original dataset that contain

at least 50 timesteps, and train the NNs to predict 50 timesteps ahead. Even

though this is not a data augmentation technique stricto sensu, it could be

interpreted as such, where we transform both the input and output data,

hoping that this will make the NN both generalize better and also more

stable during autoregressive inference.

However, this method comes with some drawbacks linked to time and hard-

ware resources. Training with 50 times as much data requires bigger models,

that need more GPUs and more time to train. We immediately see that

the networks used require more parameters then the ones trained on the

fine grid, consolidating our intuition that the previously mentioned models

learned the identity function and not a proper evolution operator, which is a

more difficult task that requires more training parameters. Also, for the way

webdataset deals with data, we need to load big batches during training, be-
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cause data is read sequentially. For example, a batch size of 50 consists in all

timesteps ranging from t = 1 to t = 50, but since we train the model to pre-

dict 50 timesteps ahead, this effectively translates in just one (input, target)

pair (there is no target for t = 2 and all the others). Thus, we decide to train

with a batch size of 200. However, given this batch size and the necessity

for bigger models, 4 GPUs become necessary. This is not a problem per se,

even though the queuing time to access these resources on MareNostrum 5

becomes very large and impedes agile experimenting, taking more than 40

hours to start. So, we perform experiments with the largest possible model

that fits in 2 GPUs, which can be accessed with much lower queuing times

(almost immediately). These models are suboptimal, since we see empirically

that heavier models perform better during grid search.

Good results by learning Hx and Hy

The best results are obtained by training with two channels, corresponding to

the two non-zero components of the magnetic field Hx and Hy. These models

are trained on a coarse time grid, predicting one step every 50 MAGNET

steps. No data augmentation is applied. We think that, in this case, training

is easier compared to using one channel only, probably becauseHy can be seen

as a 90 degree rotation of Hx, effectively behaving like a data augmentation

technique. Also, using two channels instead of eight makes the training easier,

since lighter models can be used. Moreover, having a model that predicts

the magnetic field is enough to compute all the other quantities analytically.

The configuration of the best two models are reported in tables 4.1 and 4.2.

In figures 4.3, 4.4, 4.8 and 4.9 you can see the performance of these models

in the test set. From figure 4.7 you can see that lower losses are obtained

with FNO.

The best AFNO model we obtained has nearly 100 times fewer parameters

than the best FNO, leading to reduced performance in our experiments.

While we tested larger AFNO models, increasing the parameter count did

not yield substantial improvements. We attribute this to AFNO’s lower

inductive bias compared to FNO, meaning it relies more on learning from
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data rather than leveraging built-in structural assumptions. This suggests

that AFNO could outperform FNO given sufficient training data, but under

limited data conditions, FNO’s structured approach remains advantageous.

We also find that both model perform well only on some data, while in others

they almost completely mistake the evolution of the system, see figures 4.3,

4.4, 4.8 and 4.9. We tried to find correlations between the simulation pa-

rameters and the model performance, however we have not found conclusive

results, which are left as future works. Lastly, in Figure 4.12, we quanti-

tatively assess how much the model diverges from the ground truth during

autoregressive evolution. We observe that the median MSE of AFNO over

time is best approximated by a second-order polynomial, whereas for FNO,

a linear fit provides the best approximation. On one hand, this suggests that

FNO maintains better stability during autoregressive inference. On the other

hand, we find that FNO exhibits a much higher variance in its predictions,

indicating greater inconsistency across different runs.

Architecture AFNO
Patch size [2, 2]
Embedding dimension 512
Depth 8
Number of blocks 2
MLP ratio 4.0
Learning rate 0.001
ADAM ´1 0.9
Weight decay 0.0
Cosine annealing True
Total number of parameters 21.6 M
Test loss 0.68
Mean time for one forward pass 0.515± 0.001s

Table 4.1: Hyper parameters of the best AFNO model, obtained with the methods
described in chapter 3

In tables 4.1 and 4.2 we report also the test loss and the average time to

perform one forward pass. As expected, both models are very fast during in-

ference. As a figure of reference, on average one MAGNET timestep required
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Figure 4.3: AFNO autoregressive evolution of the Hx component. Sample taken
from the test set. Simulation parameters are: Ec = 0.0359, n = 27.2, i0 = 330A.
Each row is a different time step of the evolution. The first column shows the target
simulation as performed by MAGNET; the central column shows the predictions
made by the NN; the last column shows the point wise difference between the two.
The net is able to evolve the system for 4 timesteps, before degrading the output.
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Figure 4.4: AFNO autoregressive evolution of the Hy component. Sample taken
from the test set. Simulation parameters are: Ec = 0.0359, n = 27.2, i0 = 330A.
Each row is a different time step of the evolution. The first column shows the target
simulation as performed by MAGNET; the central column shows the predictions
made by the NN; the last one shows the point wise difference between the two.
The net is able to evolve the system for 4 timesteps, before degrading the output.
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Figure 4.5: Example of failure in AFNO autoregressive evolution, Hx component.
Sample taken from the test set. Simulation parameters are: Ec = 0.0006, n =
21.7, i0 = 200A. Each row is a different time step of the evolution. The first
column shows the target simulation as performed by MAGNET; the central column
shows the predictions made by the NN; the last one shows the pointwise difference
between the two. The net hallucinates immediately and predicts wrong solutions.
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Figure 4.6: Example of failure in AFNO autoregressive evolution, Hy component.
Sample taken from the test set. Simulation parameters are: Ec = 0.0006, n =
21.7, i0 = 200A. Each row is a different time step of the evolution. The first
column shows the target simulation as performed by MAGNET; the central column
shows the predictions made by the NN; the last one shows the pointwise difference
between the two. The net hallucinates immediately and predicts wrong solutions.
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Figure 4.7: Comparison of validation loss curves between the best two models. On
the x axis, the number of processed batches are shown; on the y axis the relative
MSE of the models. Despite having almost 100 times less parameters, AFNO has
slightly worse losses than FNO. Training is stopped when the validation loss does
not improve of 0.01 after 2 epochs.
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Figure 4.8: FNO autoregressive evolution of the Hx component. Sample taken
from the test set. Simulation parameters are: Ec = 0.0359, n = 27.2, i0 = 330A.
Each row is a different time step of the evolution. The first column shows the target
simulation as performed by MAGNET; the central column shows the predictions
made by the NN; the last one shows the pointwise difference between the two. The
net is able to evolve the system for almost 5 timesteps, before diverging significantly
from the ground truth. Compared to AFNO, the output does not present noisy
features.
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Figure 4.9: FNO autoregressive evolution of the Hy component. Sample taken
from the test set. Simulation parameters are: Ec = 0.0359, n = 27.2, i0 = 330A.
Each row is a different time step of the evolution. The first column shows the target
simulation as performed by MAGNET; the central column shows the predictions
made by the NN; the last one shows the pointwise difference between the two. The
net is able to evolve the system for almost 5 timesteps, before diverging significantly
from the ground truth. Compared to AFNO, the output does not present noisy
features. 69
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Figure 4.10: Example of failure in FNO autoregressive evolution, Hx component.
Sample taken from the test set. Simulation parameters are: Ec = 0.0006, n =
21.7, i0 = 200A. Each row is a different time step of the evolution. The first
column shows the target simulation as performed by MAGNET; the central column
shows the predictions made by the NN; the last one shows the pointwise difference
between the two. As in AFNO, the net hallucinates immediately and predicts
wrong solutions.
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Figure 4.11: Example of failure in FNO autoregressive evolution, Hy component.
Sample taken from the test set. Simulation parameters are: Ec = 0.0006, n =
21.7, i0 = 200A. Each row is a different time step of the evolution. The first
column shows the target simulation as performed by MAGNET; the central column
shows the predictions made by the NN; the last one shows the pointwise difference
between the two. The net hallucinates immediately and predicts wrong solutions.
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Figure 4.12: Time dependency of MSE during autoregressive inference. Compar-
ison between AFNO and FNO. The losses are evaluated on simulations of the
test set. The boxes extend from the first quartile to the third quartile of the
data. The red line is the median. The whiskers extend from the box to the far-
thest data point lying within 1.5x the inter-quartile range (IQR) from the box.
AFNO median values are best fit by a second-order polynomial, with coefficients
0.08x2 − 0.26x + 0.47. The FNO median values are best fit from a straight line,
with slope m = 0.77 and intercept q = −1.24. MSE grows faster in AFNO than
in FNO, however FNO presents greater outliers.
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Architecture FNO
Decoder layers 2
Decoder layer size 128
Latent channels 512
Number of FNO layers 8
Learning rate 0.0001
ADAM ´1 0.9
Weight decay 0.0
Cosine annealing True
Total number of parameters 2.1 B
Test loss 0.60
Mean time for one forward pass 0.256± 0.034s

Table 4.2: Hyper parameters of the best FNO model, obtained with the methods
described in chapter 3

2.652± 0.677s to compute. All these timings refer to the simulations in the

test set. However, these figures have to be taken with a grain of salt, avoiding

to strike a direct comparison between the AI and the numerical solver. In

fact, the NNs and MAGNET have a very different degree of accuracy and

comparing the time performance of the two, without taking it into account,

would be unfair. Moreover, the AI timing performance is measured from a

plain python script, which can be made faster using compiled code. Nev-

ertheless, as will be discussed further in the next section, our results show

that an AI-accelerated approach to numerical simulations is possible, with

AI models showing faster performance, sacrificing accuracy in the long term.
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Conclusions and future works

In conclusion, informed by the recent advancements in deep learning and, in

particular, in its applications to science (SciML), we developed an AI surro-

gate model with the goal of accelerating numerical simulations of HTS. To

this end, we created a dataset composed of 9100 high-fidelity simulations with

MAGNET, a Maxwell’s equations numerical solver. We exploited the hard-

ware resources of MareNostrum 5, the supercomputer at the Barcelona Su-

percomputing Center, to perform various tests on different NN architectures,

assessing the performance of a neural operator (FNO) and its transformer-

like variant (AFNO). We saw that training struggles if the time resolution

is too fine, and the NNs benefit from coarser time scales that capture the

global time evolution of the system more easily. The final models obtained

are able to evolve the magnetic field of the system for about four to five

steps in this coarse grid, corresponding to 200-250 timesteps of the MAG-

NET simulations. However, our best networks are able to evolve only some

of the configurations in the dataset, struggling to generalise to all the phys-

ical set-ups. Future work should investigate more deeply why this happens.

In any case, we showed that the approach is feasible and that further works

can be done to improve the AI models. In the methodology section we have

already outlined possible strategies to tackle the problem, for example by

using data augmentation techniques and heavier models. Also, a possible
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tentative can be done by implementing all the physical quantities produced

by MAGNET, in order to have specialised models that can find correlations

between the dissipated energy and the induced current, with the magnetic

field values.

Even though our model is not precise enough to completely substitute a nu-

merical solver, it could be used as an integration to it, to make it converge

faster. In fact, given a solution at whatever timestep t, our model is able

to predict with high accuracy the corresponding solution at time t + 1 in

the coarse grid. Such a model could be used effectively as initial guess for

time-parallelizing algorithms, as already attempted in literature [35]. More-

over, our model can be effectively chosen for time-constrained applications,

for example in the context of real-time simulation-based inference, as shown

in the original FNO paper [23]. Future work should focus on integrating

traditional physics-based methods with data-driven approaches to leverage

the strengths of both worlds. Additionally, engineers must weigh the bene-

fits and limitations of numerical and AI-based methods, selecting the most

appropriate approach based on the specific requirements of their applications.

It is also important to highlight the limitations of the methodology followed in

this work. First of all, it is clear that a very big amount of data is necessary

to train these kinds of models, even on the very simple scenario that we

considered. As discussed in chapter 3.2.1, the creation of a high fidelity

dataset requires not only a long time to create and plenty of computing

resources, but also a lot of storage, the latter being the biggest limitation

in the MareNostrum supercomputing facility. However, this should not be

considered when comparing the speed of a trained NN to that of a numerical

solver, as these are sunk costs.

Another limitation consists in the choice of the architectures. Both FNO

and AFNO take structured mesh as an input, while MAGNET solves the

Maxwell’s equations on an unstructured grid. To use the two combined,

data had to be interpolated, causing possible artifacts in the input data and

losing the high-fidelity information coming from numerical simulations. To
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overcome this issue, future works shall focus on graph-based networks.

Moreover, in our approach we treated time as an additional independent

variable with space. However, models that take into account the sequential

nature of time evolution could be used, for example Long Short-Term Mem-

ory networks (LSTMs) [36] or Neural ODEs [37], which could improve the

performance during autoregressive evolution.

Overall, this thesis provides a solid starting point for the integration of nu-

merical solvers with AI surrogate models, in the context of HTS for nuclear

fusion reactors. We assessed the challenges and limitations of this approach,

while also showing how future works can build on it to make these models

more precise and useful in practical applications.
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