“We will be able to deliver on time”

A hearing on Fusion Energy Science took place on 20th April 2016 in the house of representatives in United States.

The Director-General of the ITER, Bernard Bigot, the Director of the Princeton Plasma Physics Laboratory, Stewart Prager, and a Physics Division scientist at the Los Alamos National Laboratory, Scott Hsu, were present in the event in order to discuss the challenges and prospects of fusion research.

Read more“We will be able to deliver on time”

Playing catch up: can the stellarator win the race to fusion energy?


Power Technology has published an interesting article on fusion research, given the first promising results from the new Wendelstein 7-X stellarator device at the Max Planck Institute of Plasma Physics.

Wendelstein 7-X produced its first hydrogen plasma in February 2016, sparking speculation that the stellarator could overtake the tokamak as the leading experimental form of nuclear fusion energy production.

Read morePlaying catch up: can the stellarator win the race to fusion energy?

Unsolved Problems in Plasma Physics Symposium

A symposium on the Solved and Unsolved Problems in Plasma Physics was held in Princeton on March 28-30, 2016.  It was to honor Prof. Nathaniel Fisch on his 65th birthday given the important advances he has made to the field of plasma physics. The meeting discussed the progress made in the last 40 years and focused on the still open issues.

Read moreUnsolved Problems in Plasma Physics Symposium

Physics World Focus On Nuclear Energy

April 2016 edition of Physics World has a focus issue devoted to nuclear energy: fission and fusion. It contains several interesting fusion articles including ITER, private fusion ventures and Wendelstein 7-X. Check it out here.

Twists and turns Germany’s Wendelstein 7-X stellarator will use a complex magnetic-field design to sustain a hydrogen plasma for about 30 min. (IPP/Wolfgang Filser )

Read morePhysics World Focus On Nuclear Energy

10 Cool Facts About Fusion Energy

credit: NASA.
  1. It’s natural. In fact, it’s abundant throughout the universe. Stars – and there are billions and billions of them – produce energy by fusion of light atoms.
  2. It’s safe. There are no dangerous byproducts. It produces some radioactive waste, but that requires only decades to decay, not thousands of years.  Further, any byproducts are not suitable for production of nuclear weapons.
  3. It’s environmentally friendly. Fusion can help slow climate change. There are no carbon emissions so fusion will not contribute to a concentration of greenhouse gases that heat the Earth. And it helps keep the air clean.
  4. It’s conservation-friendly. Fusion helps conserve natural resources because it does not rely on traditional means of generating electricity, such as burning coal.
  5. It’s international. Fusion can help reduce conflicts among countries vying for natural resources due to fuel supply imbalances.
  6. It’s unlimited. Fusion fuel – deuterium and tritium – is available around the world. Deuterium can be readily extracted from ordinary water. Tritium can be produced from lithium, which is available from land deposits or from seawater.
  7. It’s industrial scale. Fusion can power cities 24 hours a day regardless of weather.
  8. It’s exciting. Fusion produces important scientific and engineering breakthroughs and spinoffs in its own and other fields.
  9. It’s achievable. Fusion is produced in laboratories around the world and research is devoted to making it practicable.
  10. It’s the Future. Fusion can transform the way the world produces energy.

Source: Princenton Plasma Physics Laboratory (Larry Bernard)

Read more10 Cool Facts About Fusion Energy

WP Twitter Auto Publish Powered By : XYZScripts.com